// ignore-tidy-filelength //! Rustdoc's HTML rendering module. //! //! This modules contains the bulk of the logic necessary for rendering a //! rustdoc `clean::Crate` instance to a set of static HTML pages. This //! rendering process is largely driven by the `format!` syntax extension to //! perform all I/O into files and streams. //! //! The rendering process is largely driven by the `Context` and `Cache` //! structures. The cache is pre-populated by crawling the crate in question, //! and then it is shared among the various rendering threads. The cache is meant //! to be a fairly large structure not implementing `Clone` (because it's shared //! among threads). The context, however, should be a lightweight structure. This //! is cloned per-thread and contains information about what is currently being //! rendered. //! //! In order to speed up rendering (mostly because of markdown rendering), the //! rendering process has been parallelized. This parallelization is only //! exposed through the `crate` method on the context, and then also from the //! fact that the shared cache is stored in TLS (and must be accessed as such). //! //! In addition to rendering the crate itself, this module is also responsible //! for creating the corresponding search index and source file renderings. //! These threads are not parallelized (they haven't been a bottleneck yet), and //! both occur before the crate is rendered. use std::borrow::Cow; use std::cell::{Cell, RefCell}; use std::cmp::Ordering; use std::collections::{BTreeMap, VecDeque}; use std::default::Default; use std::error; use std::ffi::OsStr; use std::fmt::{self, Formatter, Write}; use std::fs::{self, File}; use std::io::prelude::*; use std::io::{self, BufReader}; use std::path::{Component, Path, PathBuf}; use std::rc::Rc; use std::str; use std::sync::Arc; use rustc::middle::privacy::AccessLevels; use rustc::middle::stability; use rustc_data_structures::flock; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_feature::UnstableFeatures; use rustc_hir as hir; use rustc_hir::def_id::DefId; use rustc_hir::Mutability; use rustc_span::edition::Edition; use rustc_span::hygiene::MacroKind; use rustc_span::source_map::FileName; use rustc_span::symbol::{sym, Symbol}; use serde::ser::SerializeSeq; use serde::{Serialize, Serializer}; use syntax::ast; use syntax::print::pprust; use crate::clean::{self, AttributesExt, Deprecation, GetDefId, SelfTy}; use crate::config::RenderOptions; use crate::docfs::{DocFS, ErrorStorage, PathError}; use crate::doctree; use crate::html::escape::Escape; use crate::html::format::fmt_impl_for_trait_page; use crate::html::format::Function; use crate::html::format::{href, print_default_space, print_generic_bounds, WhereClause}; use crate::html::format::{print_abi_with_space, Buffer, PrintWithSpace}; use crate::html::item_type::ItemType; use crate::html::markdown::{self, ErrorCodes, IdMap, Markdown, MarkdownHtml, MarkdownSummaryLine}; use crate::html::sources; use crate::html::{highlight, layout, static_files}; use minifier; #[cfg(test)] mod tests; mod cache; use cache::Cache; crate use cache::ExternalLocation::{self, *}; /// A pair of name and its optional document. pub type NameDoc = (String, Option); crate fn ensure_trailing_slash(v: &str) -> impl fmt::Display + '_ { crate::html::format::display_fn(move |f| { if !v.ends_with("/") && !v.is_empty() { write!(f, "{}/", v) } else { write!(f, "{}", v) } }) } #[derive(Debug)] pub struct Error { pub file: PathBuf, pub error: io::Error, } impl error::Error for Error {} impl std::fmt::Display for Error { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { let file = self.file.display().to_string(); if file.is_empty() { write!(f, "{}", self.error) } else { write!(f, "\"{}\": {}", self.file.display(), self.error) } } } impl PathError for Error { fn new>(e: io::Error, path: P) -> Error { Error { file: path.as_ref().to_path_buf(), error: e } } } macro_rules! try_none { ($e:expr, $file:expr) => {{ use std::io; match $e { Some(e) => e, None => { return Err(Error::new(io::Error::new(io::ErrorKind::Other, "not found"), $file)); } } }}; } macro_rules! try_err { ($e:expr, $file:expr) => {{ match $e { Ok(e) => e, Err(e) => return Err(Error::new(e, $file)), } }}; } /// Major driving force in all rustdoc rendering. This contains information /// about where in the tree-like hierarchy rendering is occurring and controls /// how the current page is being rendered. /// /// It is intended that this context is a lightweight object which can be fairly /// easily cloned because it is cloned per work-job (about once per item in the /// rustdoc tree). #[derive(Clone)] struct Context { /// Current hierarchy of components leading down to what's currently being /// rendered pub current: Vec, /// The current destination folder of where HTML artifacts should be placed. /// This changes as the context descends into the module hierarchy. pub dst: PathBuf, /// A flag, which when `true`, will render pages which redirect to the /// real location of an item. This is used to allow external links to /// publicly reused items to redirect to the right location. pub render_redirect_pages: bool, /// The map used to ensure all generated 'id=' attributes are unique. id_map: Rc>, pub shared: Arc, pub cache: Arc, } crate struct SharedContext { /// The path to the crate root source minus the file name. /// Used for simplifying paths to the highlighted source code files. pub src_root: PathBuf, /// This describes the layout of each page, and is not modified after /// creation of the context (contains info like the favicon and added html). pub layout: layout::Layout, /// This flag indicates whether `[src]` links should be generated or not. If /// the source files are present in the html rendering, then this will be /// `true`. pub include_sources: bool, /// The local file sources we've emitted and their respective url-paths. pub local_sources: FxHashMap, /// Whether the collapsed pass ran pub collapsed: bool, /// The base-URL of the issue tracker for when an item has been tagged with /// an issue number. pub issue_tracker_base_url: Option, /// The directories that have already been created in this doc run. Used to reduce the number /// of spurious `create_dir_all` calls. pub created_dirs: RefCell>, /// This flag indicates whether listings of modules (in the side bar and documentation itself) /// should be ordered alphabetically or in order of appearance (in the source code). pub sort_modules_alphabetically: bool, /// Additional themes to be added to the generated docs. pub themes: Vec, /// Suffix to be added on resource files (if suffix is "-v2" then "light.css" becomes /// "light-v2.css"). pub resource_suffix: String, /// Optional path string to be used to load static files on output pages. If not set, uses /// combinations of `../` to reach the documentation root. pub static_root_path: Option, /// Option disabled by default to generate files used by RLS and some other tools. pub generate_redirect_pages: bool, /// The fs handle we are working with. pub fs: DocFS, /// The default edition used to parse doctests. pub edition: Edition, pub codes: ErrorCodes, playground: Option, } impl Context { fn path(&self, filename: &str) -> PathBuf { // We use splitn vs Path::extension here because we might get a filename // like `style.min.css` and we want to process that into // `style-suffix.min.css`. Path::extension would just return `css` // which would result in `style.min-suffix.css` which isn't what we // want. let mut iter = filename.splitn(2, '.'); let base = iter.next().unwrap(); let ext = iter.next().unwrap(); let filename = format!("{}{}.{}", base, self.shared.resource_suffix, ext,); self.dst.join(&filename) } } impl SharedContext { crate fn ensure_dir(&self, dst: &Path) -> Result<(), Error> { let mut dirs = self.created_dirs.borrow_mut(); if !dirs.contains(dst) { try_err!(self.fs.create_dir_all(dst), dst); dirs.insert(dst.to_path_buf()); } Ok(()) } /// Based on whether the `collapse-docs` pass was run, return either the `doc_value` or the /// `collapsed_doc_value` of the given item. pub fn maybe_collapsed_doc_value<'a>(&self, item: &'a clean::Item) -> Option> { if self.collapsed { item.collapsed_doc_value().map(|s| s.into()) } else { item.doc_value().map(|s| s.into()) } } } /// Metadata about implementations for a type or trait. #[derive(Clone, Debug)] pub struct Impl { pub impl_item: clean::Item, } impl Impl { fn inner_impl(&self) -> &clean::Impl { match self.impl_item.inner { clean::ImplItem(ref impl_) => impl_, _ => panic!("non-impl item found in impl"), } } fn trait_did(&self) -> Option { self.inner_impl().trait_.def_id() } } /// Temporary storage for data obtained during `RustdocVisitor::clean()`. /// Later on moved into `CACHE_KEY`. #[derive(Default)] pub struct RenderInfo { pub inlined: FxHashSet, pub external_paths: crate::core::ExternalPaths, pub exact_paths: FxHashMap>, pub access_levels: AccessLevels, pub deref_trait_did: Option, pub deref_mut_trait_did: Option, pub owned_box_did: Option, } // Helper structs for rendering items/sidebars and carrying along contextual // information /// Struct representing one entry in the JS search index. These are all emitted /// by hand to a large JS file at the end of cache-creation. #[derive(Debug)] struct IndexItem { ty: ItemType, name: String, path: String, desc: String, parent: Option, parent_idx: Option, search_type: Option, } impl Serialize for IndexItem { fn serialize(&self, serializer: S) -> Result where S: Serializer, { assert_eq!(self.parent.is_some(), self.parent_idx.is_some()); (self.ty, &self.name, &self.path, &self.desc, self.parent_idx, &self.search_type) .serialize(serializer) } } /// A type used for the search index. #[derive(Debug)] struct Type { name: Option, generics: Option>, } impl Serialize for Type { fn serialize(&self, serializer: S) -> Result where S: Serializer, { if let Some(name) = &self.name { let mut seq = serializer.serialize_seq(None)?; seq.serialize_element(&name)?; if let Some(generics) = &self.generics { seq.serialize_element(&generics)?; } seq.end() } else { serializer.serialize_none() } } } /// Full type of functions/methods in the search index. #[derive(Debug)] struct IndexItemFunctionType { inputs: Vec, output: Option>, } impl Serialize for IndexItemFunctionType { fn serialize(&self, serializer: S) -> Result where S: Serializer, { // If we couldn't figure out a type, just write `null`. let mut iter = self.inputs.iter(); if match self.output { Some(ref output) => iter.chain(output.iter()).any(|ref i| i.name.is_none()), None => iter.any(|ref i| i.name.is_none()), } { serializer.serialize_none() } else { let mut seq = serializer.serialize_seq(None)?; seq.serialize_element(&self.inputs)?; if let Some(output) = &self.output { if output.len() > 1 { seq.serialize_element(&output)?; } else { seq.serialize_element(&output[0])?; } } seq.end() } } } thread_local!(static CACHE_KEY: RefCell> = Default::default()); thread_local!(pub static CURRENT_DEPTH: Cell = Cell::new(0)); pub fn initial_ids() -> Vec { [ "main", "search", "help", "TOC", "render-detail", "associated-types", "associated-const", "required-methods", "provided-methods", "implementors", "synthetic-implementors", "implementors-list", "synthetic-implementors-list", "methods", "deref-methods", "implementations", ] .iter() .map(|id| (String::from(*id))) .collect() } /// Generates the documentation for `crate` into the directory `dst` pub fn run( mut krate: clean::Crate, options: RenderOptions, renderinfo: RenderInfo, diag: &rustc_errors::Handler, edition: Edition, ) -> Result<(), Error> { // need to save a copy of the options for rendering the index page let md_opts = options.clone(); let RenderOptions { output, external_html, id_map, playground_url, sort_modules_alphabetically, themes, extension_css, extern_html_root_urls, resource_suffix, static_root_path, generate_search_filter, generate_redirect_pages, .. } = options; let src_root = match krate.src { FileName::Real(ref p) => match p.parent() { Some(p) => p.to_path_buf(), None => PathBuf::new(), }, _ => PathBuf::new(), }; let mut errors = Arc::new(ErrorStorage::new()); // If user passed in `--playground-url` arg, we fill in crate name here let mut playground = None; if let Some(url) = playground_url { playground = Some(markdown::Playground { crate_name: Some(krate.name.clone()), url }); } let mut layout = layout::Layout { logo: String::new(), favicon: String::new(), external_html, krate: krate.name.clone(), css_file_extension: extension_css, generate_search_filter, }; let mut issue_tracker_base_url = None; let mut include_sources = true; // Crawl the crate attributes looking for attributes which control how we're // going to emit HTML if let Some(attrs) = krate.module.as_ref().map(|m| &m.attrs) { for attr in attrs.lists(sym::doc) { match (attr.name_or_empty(), attr.value_str()) { (sym::html_favicon_url, Some(s)) => { layout.favicon = s.to_string(); } (sym::html_logo_url, Some(s)) => { layout.logo = s.to_string(); } (sym::html_playground_url, Some(s)) => { playground = Some(markdown::Playground { crate_name: Some(krate.name.clone()), url: s.to_string(), }); } (sym::issue_tracker_base_url, Some(s)) => { issue_tracker_base_url = Some(s.to_string()); } (sym::html_no_source, None) if attr.is_word() => { include_sources = false; } _ => {} } } } let mut scx = SharedContext { collapsed: krate.collapsed, src_root, include_sources, local_sources: Default::default(), issue_tracker_base_url, layout, created_dirs: Default::default(), sort_modules_alphabetically, themes, resource_suffix, static_root_path, generate_redirect_pages, fs: DocFS::new(&errors), edition, codes: ErrorCodes::from(UnstableFeatures::from_environment().is_nightly_build()), playground, }; let dst = output; scx.ensure_dir(&dst)?; krate = sources::render(&dst, &mut scx, krate)?; let (new_crate, index, cache) = Cache::from_krate(renderinfo, &extern_html_root_urls, &dst, krate); krate = new_crate; let cache = Arc::new(cache); let mut cx = Context { current: Vec::new(), dst, render_redirect_pages: false, id_map: Rc::new(RefCell::new(id_map)), shared: Arc::new(scx), cache: cache.clone(), }; // Freeze the cache now that the index has been built. Put an Arc into TLS // for future parallelization opportunities CACHE_KEY.with(|v| *v.borrow_mut() = cache.clone()); CURRENT_DEPTH.with(|s| s.set(0)); // Write shared runs within a flock; disable thread dispatching of IO temporarily. Arc::get_mut(&mut cx.shared).unwrap().fs.set_sync_only(true); write_shared(&cx, &krate, index, &md_opts, diag)?; Arc::get_mut(&mut cx.shared).unwrap().fs.set_sync_only(false); // And finally render the whole crate's documentation let ret = cx.krate(krate); let nb_errors = Arc::get_mut(&mut errors).map_or_else(|| 0, |errors| errors.write_errors(diag)); if ret.is_err() { ret } else if nb_errors > 0 { Err(Error::new(io::Error::new(io::ErrorKind::Other, "I/O error"), "")) } else { Ok(()) } } fn write_shared( cx: &Context, krate: &clean::Crate, search_index: String, options: &RenderOptions, diag: &rustc_errors::Handler, ) -> Result<(), Error> { // Write out the shared files. Note that these are shared among all rustdoc // docs placed in the output directory, so this needs to be a synchronized // operation with respect to all other rustdocs running around. let lock_file = cx.dst.join(".lock"); let _lock = try_err!(flock::Lock::new(&lock_file, true, true, true), &lock_file); // Add all the static files. These may already exist, but we just // overwrite them anyway to make sure that they're fresh and up-to-date. write_minify( &cx.shared.fs, cx.path("rustdoc.css"), static_files::RUSTDOC_CSS, options.enable_minification, )?; write_minify( &cx.shared.fs, cx.path("settings.css"), static_files::SETTINGS_CSS, options.enable_minification, )?; write_minify( &cx.shared.fs, cx.path("noscript.css"), static_files::NOSCRIPT_CSS, options.enable_minification, )?; // To avoid "light.css" to be overwritten, we'll first run over the received themes and only // then we'll run over the "official" styles. let mut themes: FxHashSet = FxHashSet::default(); for entry in &cx.shared.themes { let content = try_err!(fs::read(&entry), &entry); let theme = try_none!(try_none!(entry.file_stem(), &entry).to_str(), &entry); let extension = try_none!(try_none!(entry.extension(), &entry).to_str(), &entry); cx.shared.fs.write(cx.path(&format!("{}.{}", theme, extension)), content.as_slice())?; themes.insert(theme.to_owned()); } let write = |p, c| cx.shared.fs.write(p, c); if (*cx.shared).layout.logo.is_empty() { write(cx.path("rust-logo.png"), static_files::RUST_LOGO)?; } if (*cx.shared).layout.favicon.is_empty() { write(cx.path("favicon.ico"), static_files::RUST_FAVICON)?; } write(cx.path("brush.svg"), static_files::BRUSH_SVG)?; write(cx.path("wheel.svg"), static_files::WHEEL_SVG)?; write(cx.path("down-arrow.svg"), static_files::DOWN_ARROW_SVG)?; write_minify( &cx.shared.fs, cx.path("light.css"), static_files::themes::LIGHT, options.enable_minification, )?; themes.insert("light".to_owned()); write_minify( &cx.shared.fs, cx.path("dark.css"), static_files::themes::DARK, options.enable_minification, )?; themes.insert("dark".to_owned()); let mut themes: Vec<&String> = themes.iter().collect(); themes.sort(); // To avoid theme switch latencies as much as possible, we put everything theme related // at the beginning of the html files into another js file. let theme_js = format!( r#"var themes = document.getElementById("theme-choices"); var themePicker = document.getElementById("theme-picker"); function showThemeButtonState() {{ themes.style.display = "block"; themePicker.style.borderBottomRightRadius = "0"; themePicker.style.borderBottomLeftRadius = "0"; }} function hideThemeButtonState() {{ themes.style.display = "none"; themePicker.style.borderBottomRightRadius = "3px"; themePicker.style.borderBottomLeftRadius = "3px"; }} function switchThemeButtonState() {{ if (themes.style.display === "block") {{ hideThemeButtonState(); }} else {{ showThemeButtonState(); }} }}; function handleThemeButtonsBlur(e) {{ var active = document.activeElement; var related = e.relatedTarget; if (active.id !== "themePicker" && (!active.parentNode || active.parentNode.id !== "theme-choices") && (!related || (related.id !== "themePicker" && (!related.parentNode || related.parentNode.id !== "theme-choices")))) {{ hideThemeButtonState(); }} }} themePicker.onclick = switchThemeButtonState; themePicker.onblur = handleThemeButtonsBlur; {}.forEach(function(item) {{ var but = document.createElement('button'); but.textContent = item; but.onclick = function(el) {{ switchTheme(currentTheme, mainTheme, item, true); }}; but.onblur = handleThemeButtonsBlur; themes.appendChild(but); }});"#, serde_json::to_string(&themes).unwrap() ); write_minify(&cx.shared.fs, cx.path("theme.js"), &theme_js, options.enable_minification)?; write_minify( &cx.shared.fs, cx.path("main.js"), static_files::MAIN_JS, options.enable_minification, )?; write_minify( &cx.shared.fs, cx.path("settings.js"), static_files::SETTINGS_JS, options.enable_minification, )?; if cx.shared.include_sources { write_minify( &cx.shared.fs, cx.path("source-script.js"), static_files::sidebar::SOURCE_SCRIPT, options.enable_minification, )?; } { write_minify( &cx.shared.fs, cx.path("storage.js"), &format!( "var resourcesSuffix = \"{}\";{}", cx.shared.resource_suffix, static_files::STORAGE_JS ), options.enable_minification, )?; } if let Some(ref css) = cx.shared.layout.css_file_extension { let out = cx.path("theme.css"); let buffer = try_err!(fs::read_to_string(css), css); if !options.enable_minification { cx.shared.fs.write(&out, &buffer)?; } else { write_minify(&cx.shared.fs, out, &buffer, options.enable_minification)?; } } write_minify( &cx.shared.fs, cx.path("normalize.css"), static_files::NORMALIZE_CSS, options.enable_minification, )?; write(cx.dst.join("FiraSans-Regular.woff"), static_files::fira_sans::REGULAR)?; write(cx.dst.join("FiraSans-Medium.woff"), static_files::fira_sans::MEDIUM)?; write(cx.dst.join("FiraSans-LICENSE.txt"), static_files::fira_sans::LICENSE)?; write(cx.dst.join("SourceSerifPro-Regular.ttf.woff"), static_files::source_serif_pro::REGULAR)?; write(cx.dst.join("SourceSerifPro-Bold.ttf.woff"), static_files::source_serif_pro::BOLD)?; write(cx.dst.join("SourceSerifPro-It.ttf.woff"), static_files::source_serif_pro::ITALIC)?; write(cx.dst.join("SourceSerifPro-LICENSE.md"), static_files::source_serif_pro::LICENSE)?; write(cx.dst.join("SourceCodePro-Regular.woff"), static_files::source_code_pro::REGULAR)?; write(cx.dst.join("SourceCodePro-Semibold.woff"), static_files::source_code_pro::SEMIBOLD)?; write(cx.dst.join("SourceCodePro-LICENSE.txt"), static_files::source_code_pro::LICENSE)?; write(cx.dst.join("LICENSE-MIT.txt"), static_files::LICENSE_MIT)?; write(cx.dst.join("LICENSE-APACHE.txt"), static_files::LICENSE_APACHE)?; write(cx.dst.join("COPYRIGHT.txt"), static_files::COPYRIGHT)?; fn collect(path: &Path, krate: &str, key: &str) -> io::Result<(Vec, Vec)> { let mut ret = Vec::new(); let mut krates = Vec::new(); if path.exists() { for line in BufReader::new(File::open(path)?).lines() { let line = line?; if !line.starts_with(key) { continue; } if line.starts_with(&format!(r#"{}["{}"]"#, key, krate)) { continue; } ret.push(line.to_string()); krates.push( line[key.len() + 2..] .split('"') .next() .map(|s| s.to_owned()) .unwrap_or_else(|| String::new()), ); } } Ok((ret, krates)) } fn show_item(item: &IndexItem, krate: &str) -> String { format!( "{{'crate':'{}','ty':{},'name':'{}','desc':'{}','p':'{}'{}}}", krate, item.ty as usize, item.name, item.desc.replace("'", "\\'"), item.path, if let Some(p) = item.parent_idx { format!(",'parent':{}", p) } else { String::new() } ) } let dst = cx.dst.join(&format!("aliases{}.js", cx.shared.resource_suffix)); { let (mut all_aliases, _) = try_err!(collect(&dst, &krate.name, "ALIASES"), &dst); let mut output = String::with_capacity(100); for (alias, items) in &cx.cache.aliases { if items.is_empty() { continue; } output.push_str(&format!( "\"{}\":[{}],", alias, items.iter().map(|v| show_item(v, &krate.name)).collect::>().join(",") )); } all_aliases.push(format!("ALIASES[\"{}\"] = {{{}}};", krate.name, output)); all_aliases.sort(); let mut v = Buffer::html(); writeln!(&mut v, "var ALIASES = {{}};"); for aliases in &all_aliases { writeln!(&mut v, "{}", aliases); } cx.shared.fs.write(&dst, v.into_inner().into_bytes())?; } use std::ffi::OsString; #[derive(Debug)] struct Hierarchy { elem: OsString, children: FxHashMap, elems: FxHashSet, } impl Hierarchy { fn new(elem: OsString) -> Hierarchy { Hierarchy { elem, children: FxHashMap::default(), elems: FxHashSet::default() } } fn to_json_string(&self) -> String { let mut subs: Vec<&Hierarchy> = self.children.values().collect(); subs.sort_unstable_by(|a, b| a.elem.cmp(&b.elem)); let mut files = self .elems .iter() .map(|s| format!("\"{}\"", s.to_str().expect("invalid osstring conversion"))) .collect::>(); files.sort_unstable_by(|a, b| a.cmp(b)); let subs = subs.iter().map(|s| s.to_json_string()).collect::>().join(","); let dirs = if subs.is_empty() { String::new() } else { format!(",\"dirs\":[{}]", subs) }; let files = files.join(","); let files = if files.is_empty() { String::new() } else { format!(",\"files\":[{}]", files) }; format!( "{{\"name\":\"{name}\"{dirs}{files}}}", name = self.elem.to_str().expect("invalid osstring conversion"), dirs = dirs, files = files ) } } if cx.shared.include_sources { let mut hierarchy = Hierarchy::new(OsString::new()); for source in cx .shared .local_sources .iter() .filter_map(|p| p.0.strip_prefix(&cx.shared.src_root).ok()) { let mut h = &mut hierarchy; let mut elems = source .components() .filter_map(|s| match s { Component::Normal(s) => Some(s.to_owned()), _ => None, }) .peekable(); loop { let cur_elem = elems.next().expect("empty file path"); if elems.peek().is_none() { h.elems.insert(cur_elem); break; } else { let e = cur_elem.clone(); h.children.entry(cur_elem.clone()).or_insert_with(|| Hierarchy::new(e)); h = h.children.get_mut(&cur_elem).expect("not found child"); } } } let dst = cx.dst.join(&format!("source-files{}.js", cx.shared.resource_suffix)); let (mut all_sources, _krates) = try_err!(collect(&dst, &krate.name, "sourcesIndex"), &dst); all_sources.push(format!( "sourcesIndex[\"{}\"] = {};", &krate.name, hierarchy.to_json_string() )); all_sources.sort(); let v = format!( "var N = null;var sourcesIndex = {{}};\n{}\ncreateSourceSidebar();\n", all_sources.join("\n") ); cx.shared.fs.write(&dst, v.as_bytes())?; } // Update the search index let dst = cx.dst.join(&format!("search-index{}.js", cx.shared.resource_suffix)); let (mut all_indexes, mut krates) = try_err!(collect(&dst, &krate.name, "searchIndex"), &dst); all_indexes.push(search_index); // Sort the indexes by crate so the file will be generated identically even // with rustdoc running in parallel. all_indexes.sort(); { let mut v = String::from("var searchIndex={};\n"); v.push_str(&all_indexes.join("\n")); // "addSearchOptions" has to be called first so the crate filtering can be set before the // search might start (if it's set into the URL for example). v.push_str("\naddSearchOptions(searchIndex);initSearch(searchIndex);"); cx.shared.fs.write(&dst, &v)?; } if options.enable_index_page { if let Some(index_page) = options.index_page.clone() { let mut md_opts = options.clone(); md_opts.output = cx.dst.clone(); md_opts.external_html = (*cx.shared).layout.external_html.clone(); crate::markdown::render(index_page, md_opts, diag, cx.shared.edition); } else { let dst = cx.dst.join("index.html"); let page = layout::Page { title: "Index of crates", css_class: "mod", root_path: "./", static_root_path: cx.shared.static_root_path.as_deref(), description: "List of crates", keywords: BASIC_KEYWORDS, resource_suffix: &cx.shared.resource_suffix, extra_scripts: &[], static_extra_scripts: &[], }; krates.push(krate.name.clone()); krates.sort(); krates.dedup(); let content = format!( "

\ List of all crates\

    {}
", krates .iter() .map(|s| { format!("
  • {}
  • ", ensure_trailing_slash(s), s) }) .collect::() ); let v = layout::render(&cx.shared.layout, &page, "", content, &cx.shared.themes); cx.shared.fs.write(&dst, v.as_bytes())?; } } // Update the list of all implementors for traits let dst = cx.dst.join("implementors"); for (&did, imps) in &cx.cache.implementors { // Private modules can leak through to this phase of rustdoc, which // could contain implementations for otherwise private types. In some // rare cases we could find an implementation for an item which wasn't // indexed, so we just skip this step in that case. // // FIXME: this is a vague explanation for why this can't be a `get`, in // theory it should be... let &(ref remote_path, remote_item_type) = match cx.cache.paths.get(&did) { Some(p) => p, None => match cx.cache.external_paths.get(&did) { Some(p) => p, None => continue, }, }; #[derive(Serialize)] struct Implementor { text: String, synthetic: bool, types: Vec, } let implementors = imps .iter() .filter_map(|imp| { // If the trait and implementation are in the same crate, then // there's no need to emit information about it (there's inlining // going on). If they're in different crates then the crate defining // the trait will be interested in our implementation. // // If the implementation is from another crate then that crate // should add it. if imp.impl_item.def_id.krate == did.krate || !imp.impl_item.def_id.is_local() { None } else { Some(Implementor { text: imp.inner_impl().print().to_string(), synthetic: imp.inner_impl().synthetic, types: collect_paths_for_type(imp.inner_impl().for_.clone()), }) } }) .collect::>(); // Only create a js file if we have impls to add to it. If the trait is // documented locally though we always create the file to avoid dead // links. if implementors.is_empty() && !cx.cache.paths.contains_key(&did) { continue; } let implementors = format!( r#"implementors["{}"] = {};"#, krate.name, serde_json::to_string(&implementors).unwrap() ); let mut mydst = dst.clone(); for part in &remote_path[..remote_path.len() - 1] { mydst.push(part); } cx.shared.ensure_dir(&mydst)?; mydst.push(&format!("{}.{}.js", remote_item_type, remote_path[remote_path.len() - 1])); let (mut all_implementors, _) = try_err!(collect(&mydst, &krate.name, "implementors"), &mydst); all_implementors.push(implementors); // Sort the implementors by crate so the file will be generated // identically even with rustdoc running in parallel. all_implementors.sort(); let mut v = String::from("(function() {var implementors = {};\n"); for implementor in &all_implementors { writeln!(v, "{}", *implementor).unwrap(); } v.push_str( r" if (window.register_implementors) { window.register_implementors(implementors); } else { window.pending_implementors = implementors; } ", ); v.push_str("})()"); cx.shared.fs.write(&mydst, &v)?; } Ok(()) } fn write_minify( fs: &DocFS, dst: PathBuf, contents: &str, enable_minification: bool, ) -> Result<(), Error> { if enable_minification { if dst.extension() == Some(&OsStr::new("css")) { let res = try_none!(minifier::css::minify(contents).ok(), &dst); fs.write(dst, res.as_bytes()) } else { fs.write(dst, minifier::js::minify(contents).as_bytes()) } } else { fs.write(dst, contents.as_bytes()) } } #[derive(Debug, Eq, PartialEq, Hash)] struct ItemEntry { url: String, name: String, } impl ItemEntry { fn new(mut url: String, name: String) -> ItemEntry { while url.starts_with('/') { url.remove(0); } ItemEntry { url, name } } } impl ItemEntry { crate fn print(&self) -> impl fmt::Display + '_ { crate::html::format::display_fn(move |f| { write!(f, "{}", self.url, Escape(&self.name)) }) } } impl PartialOrd for ItemEntry { fn partial_cmp(&self, other: &ItemEntry) -> Option<::std::cmp::Ordering> { Some(self.cmp(other)) } } impl Ord for ItemEntry { fn cmp(&self, other: &ItemEntry) -> ::std::cmp::Ordering { self.name.cmp(&other.name) } } #[derive(Debug)] struct AllTypes { structs: FxHashSet, enums: FxHashSet, unions: FxHashSet, primitives: FxHashSet, traits: FxHashSet, macros: FxHashSet, functions: FxHashSet, typedefs: FxHashSet, opaque_tys: FxHashSet, statics: FxHashSet, constants: FxHashSet, keywords: FxHashSet, attributes: FxHashSet, derives: FxHashSet, trait_aliases: FxHashSet, } impl AllTypes { fn new() -> AllTypes { let new_set = |cap| FxHashSet::with_capacity_and_hasher(cap, Default::default()); AllTypes { structs: new_set(100), enums: new_set(100), unions: new_set(100), primitives: new_set(26), traits: new_set(100), macros: new_set(100), functions: new_set(100), typedefs: new_set(100), opaque_tys: new_set(100), statics: new_set(100), constants: new_set(100), keywords: new_set(100), attributes: new_set(100), derives: new_set(100), trait_aliases: new_set(100), } } fn append(&mut self, item_name: String, item_type: &ItemType) { let mut url: Vec<_> = item_name.split("::").skip(1).collect(); if let Some(name) = url.pop() { let new_url = format!("{}/{}.{}.html", url.join("/"), item_type, name); url.push(name); let name = url.join("::"); match *item_type { ItemType::Struct => self.structs.insert(ItemEntry::new(new_url, name)), ItemType::Enum => self.enums.insert(ItemEntry::new(new_url, name)), ItemType::Union => self.unions.insert(ItemEntry::new(new_url, name)), ItemType::Primitive => self.primitives.insert(ItemEntry::new(new_url, name)), ItemType::Trait => self.traits.insert(ItemEntry::new(new_url, name)), ItemType::Macro => self.macros.insert(ItemEntry::new(new_url, name)), ItemType::Function => self.functions.insert(ItemEntry::new(new_url, name)), ItemType::Typedef => self.typedefs.insert(ItemEntry::new(new_url, name)), ItemType::OpaqueTy => self.opaque_tys.insert(ItemEntry::new(new_url, name)), ItemType::Static => self.statics.insert(ItemEntry::new(new_url, name)), ItemType::Constant => self.constants.insert(ItemEntry::new(new_url, name)), ItemType::ProcAttribute => self.attributes.insert(ItemEntry::new(new_url, name)), ItemType::ProcDerive => self.derives.insert(ItemEntry::new(new_url, name)), ItemType::TraitAlias => self.trait_aliases.insert(ItemEntry::new(new_url, name)), _ => true, }; } } } fn print_entries(f: &mut Buffer, e: &FxHashSet, title: &str, class: &str) { if !e.is_empty() { let mut e: Vec<&ItemEntry> = e.iter().collect(); e.sort(); write!( f, "

    {}

      {}
    ", title, Escape(title), class, e.iter().map(|s| format!("
  • {}
  • ", s.print())).collect::() ); } } impl AllTypes { fn print(self, f: &mut Buffer) { write!( f, "

    \ \ \ \ []\ \ List of all items\

    " ); print_entries(f, &self.structs, "Structs", "structs"); print_entries(f, &self.enums, "Enums", "enums"); print_entries(f, &self.unions, "Unions", "unions"); print_entries(f, &self.primitives, "Primitives", "primitives"); print_entries(f, &self.traits, "Traits", "traits"); print_entries(f, &self.macros, "Macros", "macros"); print_entries(f, &self.attributes, "Attribute Macros", "attributes"); print_entries(f, &self.derives, "Derive Macros", "derives"); print_entries(f, &self.functions, "Functions", "functions"); print_entries(f, &self.typedefs, "Typedefs", "typedefs"); print_entries(f, &self.trait_aliases, "Trait Aliases", "trait-aliases"); print_entries(f, &self.opaque_tys, "Opaque Types", "opaque-types"); print_entries(f, &self.statics, "Statics", "statics"); print_entries(f, &self.constants, "Constants", "constants") } } #[derive(Debug)] enum Setting { Section { description: &'static str, sub_settings: Vec }, Entry { js_data_name: &'static str, description: &'static str, default_value: bool }, } impl Setting { fn display(&self) -> String { match *self { Setting::Section { ref description, ref sub_settings } => format!( "
    \
    {}
    \
    {}
    ", description, sub_settings.iter().map(|s| s.display()).collect::() ), Setting::Entry { ref js_data_name, ref description, ref default_value } => format!( "
    \ \
    {}
    \
    ", js_data_name, if *default_value { " checked" } else { "" }, description, ), } } } impl From<(&'static str, &'static str, bool)> for Setting { fn from(values: (&'static str, &'static str, bool)) -> Setting { Setting::Entry { js_data_name: values.0, description: values.1, default_value: values.2 } } } impl> From<(&'static str, Vec)> for Setting { fn from(values: (&'static str, Vec)) -> Setting { Setting::Section { description: values.0, sub_settings: values.1.into_iter().map(|v| v.into()).collect::>(), } } } fn settings(root_path: &str, suffix: &str) -> String { // (id, explanation, default value) let settings: &[Setting] = &[ ( "Auto-hide item declarations", vec![ ("auto-hide-struct", "Auto-hide structs declaration", true), ("auto-hide-enum", "Auto-hide enums declaration", false), ("auto-hide-union", "Auto-hide unions declaration", true), ("auto-hide-trait", "Auto-hide traits declaration", true), ("auto-hide-macro", "Auto-hide macros declaration", false), ], ) .into(), ("auto-hide-attributes", "Auto-hide item attributes.", true).into(), ("auto-hide-method-docs", "Auto-hide item methods' documentation", false).into(), ("auto-hide-trait-implementations", "Auto-hide trait implementations documentation", true) .into(), ("go-to-only-result", "Directly go to item in search if there is only one result", false) .into(), ("line-numbers", "Show line numbers on code examples", false).into(), ("disable-shortcuts", "Disable keyboard shortcuts", false).into(), ]; format!( "

    \ Rustdoc settings\

    \
    {}
    \ ", settings.iter().map(|s| s.display()).collect::(), root_path, suffix ) } impl Context { fn derive_id(&self, id: String) -> String { let mut map = self.id_map.borrow_mut(); map.derive(id) } /// String representation of how to get back to the root path of the 'doc/' /// folder in terms of a relative URL. fn root_path(&self) -> String { "../".repeat(self.current.len()) } /// Main method for rendering a crate. /// /// This currently isn't parallelized, but it'd be pretty easy to add /// parallelization to this function. fn krate(self, mut krate: clean::Crate) -> Result<(), Error> { let mut item = match krate.module.take() { Some(i) => i, None => return Ok(()), }; let final_file = self.dst.join(&krate.name).join("all.html"); let settings_file = self.dst.join("settings.html"); let crate_name = krate.name.clone(); item.name = Some(krate.name); let mut all = AllTypes::new(); { // Render the crate documentation let mut work = vec![(self.clone(), item)]; while let Some((mut cx, item)) = work.pop() { cx.item(item, &mut all, |cx, item| work.push((cx.clone(), item)))? } } let mut root_path = self.dst.to_str().expect("invalid path").to_owned(); if !root_path.ends_with('/') { root_path.push('/'); } let mut page = layout::Page { title: "List of all items in this crate", css_class: "mod", root_path: "../", static_root_path: self.shared.static_root_path.as_deref(), description: "List of all items in this crate", keywords: BASIC_KEYWORDS, resource_suffix: &self.shared.resource_suffix, extra_scripts: &[], static_extra_scripts: &[], }; let sidebar = if let Some(ref version) = self.cache.crate_version { format!( "

    Crate {}

    \
    \

    Version {}

    \
    \

    Back to index

    ", crate_name, version ) } else { String::new() }; let v = layout::render( &self.shared.layout, &page, sidebar, |buf: &mut Buffer| all.print(buf), &self.shared.themes, ); self.shared.fs.write(&final_file, v.as_bytes())?; // Generating settings page. page.title = "Rustdoc settings"; page.description = "Settings of Rustdoc"; page.root_path = "./"; let mut themes = self.shared.themes.clone(); let sidebar = "

    Settings

    "; themes.push(PathBuf::from("settings.css")); let v = layout::render( &self.shared.layout, &page, sidebar, settings( self.shared.static_root_path.as_deref().unwrap_or("./"), &self.shared.resource_suffix, ), &themes, ); self.shared.fs.write(&settings_file, v.as_bytes())?; Ok(()) } fn render_item(&self, it: &clean::Item, pushname: bool) -> String { // A little unfortunate that this is done like this, but it sure // does make formatting *a lot* nicer. CURRENT_DEPTH.with(|slot| { slot.set(self.current.len()); }); let mut title = if it.is_primitive() || it.is_keyword() { // No need to include the namespace for primitive types and keywords String::new() } else { self.current.join("::") }; if pushname { if !title.is_empty() { title.push_str("::"); } title.push_str(it.name.as_ref().unwrap()); } title.push_str(" - Rust"); let tyname = it.type_(); let desc = if it.is_crate() { format!("API documentation for the Rust `{}` crate.", self.shared.layout.krate) } else { format!( "API documentation for the Rust `{}` {} in crate `{}`.", it.name.as_ref().unwrap(), tyname, self.shared.layout.krate ) }; let keywords = make_item_keywords(it); let page = layout::Page { css_class: tyname.as_str(), root_path: &self.root_path(), static_root_path: self.shared.static_root_path.as_deref(), title: &title, description: &desc, keywords: &keywords, resource_suffix: &self.shared.resource_suffix, extra_scripts: &[], static_extra_scripts: &[], }; { self.id_map.borrow_mut().reset(); self.id_map.borrow_mut().populate(initial_ids()); } if !self.render_redirect_pages { layout::render( &self.shared.layout, &page, |buf: &mut _| print_sidebar(self, it, buf), |buf: &mut _| print_item(self, it, buf), &self.shared.themes, ) } else { let mut url = self.root_path(); if let Some(&(ref names, ty)) = self.cache.paths.get(&it.def_id) { for name in &names[..names.len() - 1] { url.push_str(name); url.push_str("/"); } url.push_str(&item_path(ty, names.last().unwrap())); layout::redirect(&url) } else { String::new() } } } /// Non-parallelized version of rendering an item. This will take the input /// item, render its contents, and then invoke the specified closure with /// all sub-items which need to be rendered. /// /// The rendering driver uses this closure to queue up more work. fn item(&mut self, item: clean::Item, all: &mut AllTypes, mut f: F) -> Result<(), Error> where F: FnMut(&mut Context, clean::Item), { // Stripped modules survive the rustdoc passes (i.e., `strip-private`) // if they contain impls for public types. These modules can also // contain items such as publicly re-exported structures. // // External crates will provide links to these structures, so // these modules are recursed into, but not rendered normally // (a flag on the context). if !self.render_redirect_pages { self.render_redirect_pages = item.is_stripped(); } if item.is_mod() { // modules are special because they add a namespace. We also need to // recurse into the items of the module as well. let name = item.name.as_ref().unwrap().to_string(); let scx = &self.shared; if name.is_empty() { panic!("Unexpected empty destination: {:?}", self.current); } let prev = self.dst.clone(); self.dst.push(&name); self.current.push(name); info!("Recursing into {}", self.dst.display()); let buf = self.render_item(&item, false); // buf will be empty if the module is stripped and there is no redirect for it if !buf.is_empty() { self.shared.ensure_dir(&self.dst)?; let joint_dst = self.dst.join("index.html"); scx.fs.write(&joint_dst, buf.as_bytes())?; } let m = match item.inner { clean::StrippedItem(box clean::ModuleItem(m)) | clean::ModuleItem(m) => m, _ => unreachable!(), }; // Render sidebar-items.js used throughout this module. if !self.render_redirect_pages { let items = self.build_sidebar_items(&m); let js_dst = self.dst.join("sidebar-items.js"); let v = format!("initSidebarItems({});", serde_json::to_string(&items).unwrap()); scx.fs.write(&js_dst, &v)?; } for item in m.items { f(self, item); } info!("Recursed; leaving {}", self.dst.display()); // Go back to where we were at self.dst = prev; self.current.pop().unwrap(); } else if item.name.is_some() { let buf = self.render_item(&item, true); // buf will be empty if the item is stripped and there is no redirect for it if !buf.is_empty() { let name = item.name.as_ref().unwrap(); let item_type = item.type_(); let file_name = &item_path(item_type, name); self.shared.ensure_dir(&self.dst)?; let joint_dst = self.dst.join(file_name); self.shared.fs.write(&joint_dst, buf.as_bytes())?; if !self.render_redirect_pages { all.append(full_path(self, &item), &item_type); } if self.shared.generate_redirect_pages { // Redirect from a sane URL using the namespace to Rustdoc's // URL for the page. let redir_name = format!("{}.{}.html", name, item_type.name_space()); let redir_dst = self.dst.join(redir_name); let v = layout::redirect(file_name); self.shared.fs.write(&redir_dst, v.as_bytes())?; } // If the item is a macro, redirect from the old macro URL (with !) // to the new one (without). if item_type == ItemType::Macro { let redir_name = format!("{}.{}!.html", item_type, name); let redir_dst = self.dst.join(redir_name); let v = layout::redirect(file_name); self.shared.fs.write(&redir_dst, v.as_bytes())?; } } } Ok(()) } fn build_sidebar_items(&self, m: &clean::Module) -> BTreeMap> { // BTreeMap instead of HashMap to get a sorted output let mut map: BTreeMap<_, Vec<_>> = BTreeMap::new(); for item in &m.items { if item.is_stripped() { continue; } let short = item.type_(); let myname = match item.name { None => continue, Some(ref s) => s.to_string(), }; let short = short.to_string(); map.entry(short) .or_default() .push((myname, Some(plain_summary_line(item.doc_value())))); } if self.shared.sort_modules_alphabetically { for (_, items) in &mut map { items.sort(); } } map } } impl Context { /// Generates a url appropriate for an `href` attribute back to the source of /// this item. /// /// The url generated, when clicked, will redirect the browser back to the /// original source code. /// /// If `None` is returned, then a source link couldn't be generated. This /// may happen, for example, with externally inlined items where the source /// of their crate documentation isn't known. fn src_href(&self, item: &clean::Item) -> Option { let mut root = self.root_path(); let mut path = String::new(); // We can safely ignore macros from other libraries let file = match item.source.filename { FileName::Real(ref path) => path, _ => return None, }; let (krate, path) = if item.def_id.is_local() { if let Some(path) = self.shared.local_sources.get(file) { (&self.shared.layout.krate, path) } else { return None; } } else { let (krate, src_root) = match *self.cache.extern_locations.get(&item.def_id.krate)? { (ref name, ref src, Local) => (name, src), (ref name, ref src, Remote(ref s)) => { root = s.to_string(); (name, src) } (_, _, Unknown) => return None, }; sources::clean_path(&src_root, file, false, |component| { path.push_str(&component.to_string_lossy()); path.push('/'); }); let mut fname = file.file_name().expect("source has no filename").to_os_string(); fname.push(".html"); path.push_str(&fname.to_string_lossy()); (krate, &path) }; let lines = if item.source.loline == item.source.hiline { item.source.loline.to_string() } else { format!("{}-{}", item.source.loline, item.source.hiline) }; Some(format!( "{root}src/{krate}/{path}#{lines}", root = Escape(&root), krate = krate, path = path, lines = lines )) } } fn wrap_into_docblock(w: &mut Buffer, f: F) where F: FnOnce(&mut Buffer), { write!(w, "
    "); f(w); write!(w, "
    ") } fn print_item(cx: &Context, item: &clean::Item, buf: &mut Buffer) { debug_assert!(!item.is_stripped()); // Write the breadcrumb trail header for the top write!(buf, "

    "); if let Some(version) = item.stable_since() { write!( buf, "{0}", version ); } write!( buf, "\ \ []\ \ " ); // Write `src` tag // // When this item is part of a `pub use` in a downstream crate, the // [src] link in the downstream documentation will actually come back to // this page, and this link will be auto-clicked. The `id` attribute is // used to find the link to auto-click. if cx.shared.include_sources && !item.is_primitive() { if let Some(l) = cx.src_href(item) { write!(buf, "[src]", l, "goto source code"); } } write!(buf, ""); // out-of-band write!(buf, ""); let name = match item.inner { clean::ModuleItem(ref m) => { if m.is_crate { "Crate " } else { "Module " } } clean::FunctionItem(..) | clean::ForeignFunctionItem(..) => "Function ", clean::TraitItem(..) => "Trait ", clean::StructItem(..) => "Struct ", clean::UnionItem(..) => "Union ", clean::EnumItem(..) => "Enum ", clean::TypedefItem(..) => "Type Definition ", clean::MacroItem(..) => "Macro ", clean::ProcMacroItem(ref mac) => match mac.kind { MacroKind::Bang => "Macro ", MacroKind::Attr => "Attribute Macro ", MacroKind::Derive => "Derive Macro ", }, clean::PrimitiveItem(..) => "Primitive Type ", clean::StaticItem(..) | clean::ForeignStaticItem(..) => "Static ", clean::ConstantItem(..) => "Constant ", clean::ForeignTypeItem => "Foreign Type ", clean::KeywordItem(..) => "Keyword ", clean::OpaqueTyItem(..) => "Opaque Type ", clean::TraitAliasItem(..) => "Trait Alias ", _ => { // We don't generate pages for any other type. unreachable!(); } }; buf.write_str(name); if !item.is_primitive() && !item.is_keyword() { let cur = &cx.current; let amt = if item.is_mod() { cur.len() - 1 } else { cur.len() }; for (i, component) in cur.iter().enumerate().take(amt) { write!( buf, "{}::", "../".repeat(cur.len() - i - 1), component ); } } write!(buf, "{}", item.type_(), item.name.as_ref().unwrap()); write!(buf, "

    "); // in-band match item.inner { clean::ModuleItem(ref m) => item_module(buf, cx, item, &m.items), clean::FunctionItem(ref f) | clean::ForeignFunctionItem(ref f) => { item_function(buf, cx, item, f) } clean::TraitItem(ref t) => item_trait(buf, cx, item, t), clean::StructItem(ref s) => item_struct(buf, cx, item, s), clean::UnionItem(ref s) => item_union(buf, cx, item, s), clean::EnumItem(ref e) => item_enum(buf, cx, item, e), clean::TypedefItem(ref t, _) => item_typedef(buf, cx, item, t), clean::MacroItem(ref m) => item_macro(buf, cx, item, m), clean::ProcMacroItem(ref m) => item_proc_macro(buf, cx, item, m), clean::PrimitiveItem(_) => item_primitive(buf, cx, item), clean::StaticItem(ref i) | clean::ForeignStaticItem(ref i) => item_static(buf, cx, item, i), clean::ConstantItem(ref c) => item_constant(buf, cx, item, c), clean::ForeignTypeItem => item_foreign_type(buf, cx, item), clean::KeywordItem(_) => item_keyword(buf, cx, item), clean::OpaqueTyItem(ref e, _) => item_opaque_ty(buf, cx, item, e), clean::TraitAliasItem(ref ta) => item_trait_alias(buf, cx, item, ta), _ => { // We don't generate pages for any other type. unreachable!(); } } } fn item_path(ty: ItemType, name: &str) -> String { match ty { ItemType::Module => format!("{}index.html", ensure_trailing_slash(name)), _ => format!("{}.{}.html", ty, name), } } fn full_path(cx: &Context, item: &clean::Item) -> String { let mut s = cx.current.join("::"); s.push_str("::"); s.push_str(item.name.as_ref().unwrap()); s } #[inline] fn plain_summary_line(s: Option<&str>) -> String { let s = s.unwrap_or(""); // This essentially gets the first paragraph of text in one line. let mut line = s .lines() .skip_while(|line| line.chars().all(|c| c.is_whitespace())) .take_while(|line| line.chars().any(|c| !c.is_whitespace())) .fold(String::new(), |mut acc, line| { acc.push_str(line); acc.push(' '); acc }); // remove final whitespace line.pop(); markdown::plain_summary_line(&line[..]) } fn shorten(s: String) -> String { if s.chars().count() > 60 { let mut len = 0; let mut ret = s .split_whitespace() .take_while(|p| { // + 1 for the added character after the word. len += p.chars().count() + 1; len < 60 }) .collect::>() .join(" "); ret.push('…'); ret } else { s } } fn document(w: &mut Buffer, cx: &Context, item: &clean::Item) { if let Some(ref name) = item.name { info!("Documenting {}", name); } document_stability(w, cx, item, false); document_full(w, item, cx, "", false); } /// Render md_text as markdown. fn render_markdown( w: &mut Buffer, cx: &Context, md_text: &str, links: Vec<(String, String)>, prefix: &str, is_hidden: bool, ) { let mut ids = cx.id_map.borrow_mut(); write!( w, "
    {}{}
    ", if is_hidden { " hidden" } else { "" }, prefix, Markdown( md_text, &links, &mut ids, cx.shared.codes, cx.shared.edition, &cx.shared.playground ) .to_string() ) } fn document_short( w: &mut Buffer, cx: &Context, item: &clean::Item, link: AssocItemLink<'_>, prefix: &str, is_hidden: bool, ) { if let Some(s) = item.doc_value() { let markdown = if s.contains('\n') { format!( "{} [Read more]({})", &plain_summary_line(Some(s)), naive_assoc_href(item, link) ) } else { plain_summary_line(Some(s)) }; render_markdown(w, cx, &markdown, item.links(), prefix, is_hidden); } else if !prefix.is_empty() { write!( w, "
    {}
    ", if is_hidden { " hidden" } else { "" }, prefix ); } } fn document_full(w: &mut Buffer, item: &clean::Item, cx: &Context, prefix: &str, is_hidden: bool) { if let Some(s) = cx.shared.maybe_collapsed_doc_value(item) { debug!("Doc block: =====\n{}\n=====", s); render_markdown(w, cx, &*s, item.links(), prefix, is_hidden); } else if !prefix.is_empty() { write!( w, "
    {}
    ", if is_hidden { " hidden" } else { "" }, prefix ); } } fn document_stability(w: &mut Buffer, cx: &Context, item: &clean::Item, is_hidden: bool) { let stabilities = short_stability(item, cx); if !stabilities.is_empty() { write!(w, "
    ", if is_hidden { " hidden" } else { "" }); for stability in stabilities { write!(w, "{}", stability); } write!(w, "
    "); } } fn document_non_exhaustive_header(item: &clean::Item) -> &str { if item.is_non_exhaustive() { " (Non-exhaustive)" } else { "" } } fn document_non_exhaustive(w: &mut Buffer, item: &clean::Item) { if item.is_non_exhaustive() { write!(w, "
    ", { if item.is_struct() { "struct" } else if item.is_enum() { "enum" } else if item.is_variant() { "variant" } else { "type" } }); if item.is_struct() { write!( w, "Non-exhaustive structs could have additional fields added in future. \ Therefore, non-exhaustive structs cannot be constructed in external crates \ using the traditional Struct {{ .. }} syntax; cannot be \ matched against without a wildcard ..; and \ struct update syntax will not work." ); } else if item.is_enum() { write!( w, "Non-exhaustive enums could have additional variants added in future. \ Therefore, when matching against variants of non-exhaustive enums, an \ extra wildcard arm must be added to account for any future variants." ); } else if item.is_variant() { write!( w, "Non-exhaustive enum variants could have additional fields added in future. \ Therefore, non-exhaustive enum variants cannot be constructed in external \ crates and cannot be matched against." ); } else { write!( w, "This type will require a wildcard arm in any match statements or \ constructors." ); } write!(w, "
    "); } } fn name_key(name: &str) -> (&str, u64, usize) { let end = name.bytes().rposition(|b| b.is_ascii_digit()).map_or(name.len(), |i| i + 1); // find number at end let split = name[0..end].bytes().rposition(|b| !b.is_ascii_digit()).map_or(0, |i| i + 1); // count leading zeroes let after_zeroes = name[split..end].bytes().position(|b| b != b'0').map_or(name.len(), |extra| split + extra); // sort leading zeroes last let num_zeroes = after_zeroes - split; match name[split..end].parse() { Ok(n) => (&name[..split], n, num_zeroes), Err(_) => (name, 0, num_zeroes), } } fn item_module(w: &mut Buffer, cx: &Context, item: &clean::Item, items: &[clean::Item]) { document(w, cx, item); let mut indices = (0..items.len()).filter(|i| !items[*i].is_stripped()).collect::>(); // the order of item types in the listing fn reorder(ty: ItemType) -> u8 { match ty { ItemType::ExternCrate => 0, ItemType::Import => 1, ItemType::Primitive => 2, ItemType::Module => 3, ItemType::Macro => 4, ItemType::Struct => 5, ItemType::Enum => 6, ItemType::Constant => 7, ItemType::Static => 8, ItemType::Trait => 9, ItemType::Function => 10, ItemType::Typedef => 12, ItemType::Union => 13, _ => 14 + ty as u8, } } fn cmp(i1: &clean::Item, i2: &clean::Item, idx1: usize, idx2: usize) -> Ordering { let ty1 = i1.type_(); let ty2 = i2.type_(); if ty1 != ty2 { return (reorder(ty1), idx1).cmp(&(reorder(ty2), idx2)); } let s1 = i1.stability.as_ref().map(|s| s.level); let s2 = i2.stability.as_ref().map(|s| s.level); match (s1, s2) { (Some(stability::Unstable), Some(stability::Stable)) => return Ordering::Greater, (Some(stability::Stable), Some(stability::Unstable)) => return Ordering::Less, _ => {} } let lhs = i1.name.as_ref().map_or("", |s| &**s); let rhs = i2.name.as_ref().map_or("", |s| &**s); name_key(lhs).cmp(&name_key(rhs)) } if cx.shared.sort_modules_alphabetically { indices.sort_by(|&i1, &i2| cmp(&items[i1], &items[i2], i1, i2)); } // This call is to remove re-export duplicates in cases such as: // // ``` // pub mod foo { // pub mod bar { // pub trait Double { fn foo(); } // } // } // // pub use foo::bar::*; // pub use foo::*; // ``` // // `Double` will appear twice in the generated docs. // // FIXME: This code is quite ugly and could be improved. Small issue: DefId // can be identical even if the elements are different (mostly in imports). // So in case this is an import, we keep everything by adding a "unique id" // (which is the position in the vector). indices.dedup_by_key(|i| { ( items[*i].def_id, if items[*i].name.as_ref().is_some() { Some(full_path(cx, &items[*i])) } else { None }, items[*i].type_(), if items[*i].is_import() { *i } else { 0 }, ) }); debug!("{:?}", indices); let mut curty = None; for &idx in &indices { let myitem = &items[idx]; if myitem.is_stripped() { continue; } let myty = Some(myitem.type_()); if curty == Some(ItemType::ExternCrate) && myty == Some(ItemType::Import) { // Put `extern crate` and `use` re-exports in the same section. curty = myty; } else if myty != curty { if curty.is_some() { write!(w, ""); } curty = myty; let (short, name) = item_ty_to_strs(&myty.unwrap()); write!( w, "

    \ {name}

    \n", id = cx.derive_id(short.to_owned()), name = name ); } match myitem.inner { clean::ExternCrateItem(ref name, ref src) => { use crate::html::format::anchor; match *src { Some(ref src) => write!( w, ""); } clean::ImportItem(ref import) => { write!( w, "", myitem.visibility.print_with_space(), import.print() ); } _ => { if myitem.name.is_none() { continue; } let unsafety_flag = match myitem.inner { clean::FunctionItem(ref func) | clean::ForeignFunctionItem(ref func) if func.header.unsafety == hir::Unsafety::Unsafe => { "" } _ => "", }; let stab = myitem.stability_class(); let add = if stab.is_some() { " " } else { "" }; let doc_value = myitem.doc_value().unwrap_or(""); write!( w, "\ \ \ \ ", name = *myitem.name.as_ref().unwrap(), stab_tags = stability_tags(myitem), docs = MarkdownSummaryLine(doc_value, &myitem.links()).to_string(), class = myitem.type_(), add = add, stab = stab.unwrap_or_else(|| String::new()), unsafety_flag = unsafety_flag, href = item_path(myitem.type_(), myitem.name.as_ref().unwrap()), title = [full_path(cx, myitem), myitem.type_().to_string()] .iter() .filter_map(|s| if !s.is_empty() { Some(s.as_str()) } else { None }) .collect::>() .join(" "), ); } } } if curty.is_some() { write!(w, "
    {}extern crate {} as {};", myitem.visibility.print_with_space(), anchor(myitem.def_id, src), name ), None => write!( w, "
    {}extern crate {};", myitem.visibility.print_with_space(), anchor(myitem.def_id, name) ), } write!(w, "
    {}{}
    {name}{unsafety_flag}{stab_tags}{docs}
    "); } } /// Render the stability and deprecation tags that are displayed in the item's summary at the /// module level. fn stability_tags(item: &clean::Item) -> String { let mut tags = String::new(); fn tag_html(class: &str, contents: &str) -> String { format!(r#"{}"#, class, contents) } // The trailing space after each tag is to space it properly against the rest of the docs. if item.deprecation().is_some() { let mut message = "Deprecated"; if let Some(ref stab) = item.stability { if let Some(ref depr) = stab.deprecation { if let Some(ref since) = depr.since { if !stability::deprecation_in_effect(&since) { message = "Deprecation planned"; } } } } tags += &tag_html("deprecated", message); } if let Some(stab) = item.stability.as_ref().filter(|s| s.level == stability::Unstable) { if stab.feature.as_deref() == Some("rustc_private") { tags += &tag_html("internal", "Internal"); } else { tags += &tag_html("unstable", "Experimental"); } } if let Some(ref cfg) = item.attrs.cfg { tags += &tag_html("portability", &cfg.render_short_html()); } tags } /// Render the stability and/or deprecation warning that is displayed at the top of the item's /// documentation. fn short_stability(item: &clean::Item, cx: &Context) -> Vec { let mut stability = vec![]; let error_codes = cx.shared.codes; if let Some(Deprecation { note, since }) = &item.deprecation() { // We display deprecation messages for #[deprecated] and #[rustc_deprecated] // but only display the future-deprecation messages for #[rustc_deprecated]. let mut message = if let Some(since) = since { format!("Deprecated since {}", Escape(since)) } else { String::from("Deprecated") }; if let Some(ref stab) = item.stability { if let Some(ref depr) = stab.deprecation { if let Some(ref since) = depr.since { if !stability::deprecation_in_effect(&since) { message = format!("Deprecating in {}", Escape(&since)); } } } } if let Some(note) = note { let mut ids = cx.id_map.borrow_mut(); let html = MarkdownHtml( ¬e, &mut ids, error_codes, cx.shared.edition, &cx.shared.playground, ); message.push_str(&format!(": {}", html.to_string())); } stability.push(format!("
    {}
    ", message)); } if let Some(stab) = item.stability.as_ref().filter(|stab| stab.level == stability::Unstable) { let is_rustc_private = stab.feature.as_deref() == Some("rustc_private"); let mut message = if is_rustc_private { "⚙️ This is an internal compiler API." } else { "🔬 This is a nightly-only experimental API." } .to_owned(); if let Some(feature) = stab.feature.as_deref() { let mut feature = format!("{}", Escape(&feature)); if let (Some(url), Some(issue)) = (&cx.shared.issue_tracker_base_url, stab.issue) { feature.push_str(&format!( " #{issue}", url = url, issue = issue )); } message.push_str(&format!(" ({})", feature)); } if let Some(unstable_reason) = &stab.unstable_reason { // Provide a more informative message than the compiler help. let unstable_reason = if is_rustc_private { "This crate is being loaded from the sysroot, a permanently unstable location \ for private compiler dependencies. It is not intended for general use. Prefer \ using a public version of this crate from \ [crates.io](https://crates.io) via [`Cargo.toml`]\ (https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html)." } else { unstable_reason }; let mut ids = cx.id_map.borrow_mut(); message = format!( "
    {}{}
    ", message, MarkdownHtml( &unstable_reason, &mut ids, error_codes, cx.shared.edition, &cx.shared.playground, ) .to_string() ); } let class = if is_rustc_private { "internal" } else { "unstable" }; stability.push(format!("
    {}
    ", class, message)); } if let Some(ref cfg) = item.attrs.cfg { stability.push(format!("
    {}
    ", cfg.render_long_html())); } stability } fn item_constant(w: &mut Buffer, cx: &Context, it: &clean::Item, c: &clean::Constant) { write!(w, "
    ");
        render_attributes(w, it, false);
    
        write!(
            w,
            "{vis}const \
                   {name}: {typ}",
            vis = it.visibility.print_with_space(),
            name = it.name.as_ref().unwrap(),
            typ = c.type_.print(),
        );
    
        if c.value.is_some() || c.is_literal {
            write!(w, " = {expr};", expr = Escape(&c.expr));
        } else {
            write!(w, ";");
        }
    
        if let Some(value) = &c.value {
            if !c.is_literal {
                let value_lowercase = value.to_lowercase();
                let expr_lowercase = c.expr.to_lowercase();
    
                if value_lowercase != expr_lowercase
                    && value_lowercase.trim_end_matches("i32") != expr_lowercase
                {
                    write!(w, " // {value}", value = Escape(value));
                }
            }
        }
    
        write!(w, "
    "); document(w, cx, it) } fn item_static(w: &mut Buffer, cx: &Context, it: &clean::Item, s: &clean::Static) { write!(w, "
    ");
        render_attributes(w, it, false);
        write!(
            w,
            "{vis}static {mutability}\
                   {name}: {typ}
    ", vis = it.visibility.print_with_space(), mutability = s.mutability.print_with_space(), name = it.name.as_ref().unwrap(), typ = s.type_.print() ); document(w, cx, it) } fn item_function(w: &mut Buffer, cx: &Context, it: &clean::Item, f: &clean::Function) { let header_len = format!( "{}{}{}{}{:#}fn {}{:#}", it.visibility.print_with_space(), f.header.constness.print_with_space(), f.header.unsafety.print_with_space(), f.header.asyncness.print_with_space(), print_abi_with_space(f.header.abi), it.name.as_ref().unwrap(), f.generics.print() ) .len(); write!(w, "{}
    ", render_spotlight_traits(it));
        render_attributes(w, it, false);
        write!(
            w,
            "{vis}{constness}{unsafety}{asyncness}{abi}fn \
               {name}{generics}{decl}{where_clause}
    ", vis = it.visibility.print_with_space(), constness = f.header.constness.print_with_space(), unsafety = f.header.unsafety.print_with_space(), asyncness = f.header.asyncness.print_with_space(), abi = print_abi_with_space(f.header.abi), name = it.name.as_ref().unwrap(), generics = f.generics.print(), where_clause = WhereClause { gens: &f.generics, indent: 0, end_newline: true }, decl = Function { decl: &f.decl, header_len, indent: 0, asyncness: f.header.asyncness } .print() ); document(w, cx, it) } fn render_implementor( cx: &Context, implementor: &Impl, w: &mut Buffer, implementor_dups: &FxHashMap<&str, (DefId, bool)>, ) { // If there's already another implementor that has the same abbridged name, use the // full path, for example in `std::iter::ExactSizeIterator` let use_absolute = match implementor.inner_impl().for_ { clean::ResolvedPath { ref path, is_generic: false, .. } | clean::BorrowedRef { type_: box clean::ResolvedPath { ref path, is_generic: false, .. }, .. } => implementor_dups[path.last_name()].1, _ => false, }; render_impl( w, cx, implementor, AssocItemLink::Anchor(None), RenderMode::Normal, implementor.impl_item.stable_since(), false, Some(use_absolute), false, false, ); } fn render_impls(cx: &Context, w: &mut Buffer, traits: &[&&Impl], containing_item: &clean::Item) { let mut impls = traits .iter() .map(|i| { let did = i.trait_did().unwrap(); let assoc_link = AssocItemLink::GotoSource(did, &i.inner_impl().provided_trait_methods); let mut buffer = if w.is_for_html() { Buffer::html() } else { Buffer::new() }; render_impl( &mut buffer, cx, i, assoc_link, RenderMode::Normal, containing_item.stable_since(), true, None, false, true, ); buffer.into_inner() }) .collect::>(); impls.sort(); w.write_str(&impls.join("")); } fn bounds(t_bounds: &[clean::GenericBound], trait_alias: bool) -> String { let mut bounds = String::new(); if !t_bounds.is_empty() { if !trait_alias { bounds.push_str(": "); } for (i, p) in t_bounds.iter().enumerate() { if i > 0 { bounds.push_str(" + "); } bounds.push_str(&p.print().to_string()); } } bounds } fn compare_impl<'a, 'b>(lhs: &'a &&Impl, rhs: &'b &&Impl) -> Ordering { let lhs = format!("{}", lhs.inner_impl().print()); let rhs = format!("{}", rhs.inner_impl().print()); // lhs and rhs are formatted as HTML, which may be unnecessary name_key(&lhs).cmp(&name_key(&rhs)) } fn item_trait(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::Trait) { let bounds = bounds(&t.bounds, false); let types = t.items.iter().filter(|m| m.is_associated_type()).collect::>(); let consts = t.items.iter().filter(|m| m.is_associated_const()).collect::>(); let required = t.items.iter().filter(|m| m.is_ty_method()).collect::>(); let provided = t.items.iter().filter(|m| m.is_method()).collect::>(); // Output the trait definition wrap_into_docblock(w, |w| { write!(w, "
    ");
            render_attributes(w, it, true);
            write!(
                w,
                "{}{}{}trait {}{}{}",
                it.visibility.print_with_space(),
                t.unsafety.print_with_space(),
                if t.is_auto { "auto " } else { "" },
                it.name.as_ref().unwrap(),
                t.generics.print(),
                bounds
            );
    
            if !t.generics.where_predicates.is_empty() {
                write!(w, "{}", WhereClause { gens: &t.generics, indent: 0, end_newline: true });
            } else {
                write!(w, " ");
            }
    
            if t.items.is_empty() {
                write!(w, "{{ }}");
            } else {
                // FIXME: we should be using a derived_id for the Anchors here
                write!(w, "{{\n");
                for t in &types {
                    render_assoc_item(w, t, AssocItemLink::Anchor(None), ItemType::Trait);
                    write!(w, ";\n");
                }
                if !types.is_empty() && !consts.is_empty() {
                    w.write_str("\n");
                }
                for t in &consts {
                    render_assoc_item(w, t, AssocItemLink::Anchor(None), ItemType::Trait);
                    write!(w, ";\n");
                }
                if !consts.is_empty() && !required.is_empty() {
                    w.write_str("\n");
                }
                for (pos, m) in required.iter().enumerate() {
                    render_assoc_item(w, m, AssocItemLink::Anchor(None), ItemType::Trait);
                    write!(w, ";\n");
    
                    if pos < required.len() - 1 {
                        write!(w, "
    "); } } if !required.is_empty() && !provided.is_empty() { w.write_str("\n"); } for (pos, m) in provided.iter().enumerate() { render_assoc_item(w, m, AssocItemLink::Anchor(None), ItemType::Trait); match m.inner { clean::MethodItem(ref inner) if !inner.generics.where_predicates.is_empty() => { write!(w, ",\n {{ ... }}\n"); } _ => { write!(w, " {{ ... }}\n"); } } if pos < provided.len() - 1 { write!(w, "
    "); } } write!(w, "}}"); } write!(w, "
    ") }); // Trait documentation document(w, cx, it); fn write_small_section_header(w: &mut Buffer, id: &str, title: &str, extra_content: &str) { write!( w, "

    \ {1}\

    {2}", id, title, extra_content ) } fn write_loading_content(w: &mut Buffer, extra_content: &str) { write!(w, "{}Loading content...", extra_content) } fn trait_item(w: &mut Buffer, cx: &Context, m: &clean::Item, t: &clean::Item) { let name = m.name.as_ref().unwrap(); let item_type = m.type_(); let id = cx.derive_id(format!("{}.{}", item_type, name)); let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space())); write!( w, "

    {extra}", extra = render_spotlight_traits(m), id = id, ns_id = ns_id ); render_assoc_item(w, m, AssocItemLink::Anchor(Some(&id)), ItemType::Impl); write!(w, ""); render_stability_since(w, m, t); write!(w, "

    "); document(w, cx, m); } if !types.is_empty() { write_small_section_header( w, "associated-types", "Associated Types", "
    ", ); for t in &types { trait_item(w, cx, *t, it); } write_loading_content(w, "
    "); } if !consts.is_empty() { write_small_section_header( w, "associated-const", "Associated Constants", "
    ", ); for t in &consts { trait_item(w, cx, *t, it); } write_loading_content(w, "
    "); } // Output the documentation for each function individually if !required.is_empty() { write_small_section_header( w, "required-methods", "Required methods", "
    ", ); for m in &required { trait_item(w, cx, *m, it); } write_loading_content(w, "
    "); } if !provided.is_empty() { write_small_section_header( w, "provided-methods", "Provided methods", "
    ", ); for m in &provided { trait_item(w, cx, *m, it); } write_loading_content(w, "
    "); } // If there are methods directly on this trait object, render them here. render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All); let mut synthetic_types = Vec::new(); if let Some(implementors) = cx.cache.implementors.get(&it.def_id) { // The DefId is for the first Type found with that name. The bool is // if any Types with the same name but different DefId have been found. let mut implementor_dups: FxHashMap<&str, (DefId, bool)> = FxHashMap::default(); for implementor in implementors { match implementor.inner_impl().for_ { clean::ResolvedPath { ref path, did, is_generic: false, .. } | clean::BorrowedRef { type_: box clean::ResolvedPath { ref path, did, is_generic: false, .. }, .. } => { let &mut (prev_did, ref mut has_duplicates) = implementor_dups.entry(path.last_name()).or_insert((did, false)); if prev_did != did { *has_duplicates = true; } } _ => {} } } let (local, foreign) = implementors.iter().partition::, _>(|i| { i.inner_impl().for_.def_id().map_or(true, |d| cx.cache.paths.contains_key(&d)) }); let (mut synthetic, mut concrete): (Vec<&&Impl>, Vec<&&Impl>) = local.iter().partition(|i| i.inner_impl().synthetic); synthetic.sort_by(compare_impl); concrete.sort_by(compare_impl); if !foreign.is_empty() { write_small_section_header(w, "foreign-impls", "Implementations on Foreign Types", ""); for implementor in foreign { let assoc_link = AssocItemLink::GotoSource( implementor.impl_item.def_id, &implementor.inner_impl().provided_trait_methods, ); render_impl( w, cx, &implementor, assoc_link, RenderMode::Normal, implementor.impl_item.stable_since(), false, None, true, false, ); } write_loading_content(w, ""); } write_small_section_header( w, "implementors", "Implementors", "
    ", ); for implementor in concrete { render_implementor(cx, implementor, w, &implementor_dups); } write_loading_content(w, "
    "); if t.auto { write_small_section_header( w, "synthetic-implementors", "Auto implementors", "
    ", ); for implementor in synthetic { synthetic_types .extend(collect_paths_for_type(implementor.inner_impl().for_.clone())); render_implementor(cx, implementor, w, &implementor_dups); } write_loading_content(w, "
    "); } } else { // even without any implementations to write in, we still want the heading and list, so the // implementors javascript file pulled in below has somewhere to write the impls into write_small_section_header( w, "implementors", "Implementors", "
    ", ); write_loading_content(w, "
    "); if t.auto { write_small_section_header( w, "synthetic-implementors", "Auto implementors", "
    ", ); write_loading_content(w, "
    "); } } write!( w, r#""#, serde_json::to_string(&synthetic_types).unwrap(), ); write!( w, r#""#, root_path = vec![".."; cx.current.len()].join("/"), path = if it.def_id.is_local() { cx.current.join("/") } else { let (ref path, _) = cx.cache.external_paths[&it.def_id]; path[..path.len() - 1].join("/") }, ty = it.type_(), name = *it.name.as_ref().unwrap() ); } fn naive_assoc_href(it: &clean::Item, link: AssocItemLink<'_>) -> String { use crate::html::item_type::ItemType::*; let name = it.name.as_ref().unwrap(); let ty = match it.type_() { Typedef | AssocType => AssocType, s @ _ => s, }; let anchor = format!("#{}.{}", ty, name); match link { AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id), AssocItemLink::Anchor(None) => anchor, AssocItemLink::GotoSource(did, _) => { href(did).map(|p| format!("{}{}", p.0, anchor)).unwrap_or(anchor) } } } fn assoc_const( w: &mut Buffer, it: &clean::Item, ty: &clean::Type, _default: Option<&String>, link: AssocItemLink<'_>, extra: &str, ) { write!( w, "{}{}const {}: {}", extra, it.visibility.print_with_space(), naive_assoc_href(it, link), it.name.as_ref().unwrap(), ty.print() ); } fn assoc_type( w: &mut Buffer, it: &clean::Item, bounds: &[clean::GenericBound], default: Option<&clean::Type>, link: AssocItemLink<'_>, extra: &str, ) { write!( w, "{}type {}", extra, naive_assoc_href(it, link), it.name.as_ref().unwrap() ); if !bounds.is_empty() { write!(w, ": {}", print_generic_bounds(bounds)) } if let Some(default) = default { write!(w, " = {}", default.print()) } } fn render_stability_since_raw(w: &mut Buffer, ver: Option<&str>, containing_ver: Option<&str>) { if let Some(v) = ver { if containing_ver != ver && v.len() > 0 { write!(w, "{0}", v) } } } fn render_stability_since(w: &mut Buffer, item: &clean::Item, containing_item: &clean::Item) { render_stability_since_raw(w, item.stable_since(), containing_item.stable_since()) } fn render_assoc_item( w: &mut Buffer, item: &clean::Item, link: AssocItemLink<'_>, parent: ItemType, ) { fn method( w: &mut Buffer, meth: &clean::Item, header: hir::FnHeader, g: &clean::Generics, d: &clean::FnDecl, link: AssocItemLink<'_>, parent: ItemType, ) { let name = meth.name.as_ref().unwrap(); let anchor = format!("#{}.{}", meth.type_(), name); let href = match link { AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id), AssocItemLink::Anchor(None) => anchor, AssocItemLink::GotoSource(did, provided_methods) => { // We're creating a link from an impl-item to the corresponding // trait-item and need to map the anchored type accordingly. let ty = if provided_methods.contains(name) { ItemType::Method } else { ItemType::TyMethod }; href(did).map(|p| format!("{}#{}.{}", p.0, ty, name)).unwrap_or(anchor) } }; let mut header_len = format!( "{}{}{}{}{}{:#}fn {}{:#}", meth.visibility.print_with_space(), header.constness.print_with_space(), header.unsafety.print_with_space(), header.asyncness.print_with_space(), print_default_space(meth.is_default()), print_abi_with_space(header.abi), name, g.print() ) .len(); let (indent, end_newline) = if parent == ItemType::Trait { header_len += 4; (4, false) } else { (0, true) }; render_attributes(w, meth, false); write!( w, "{}{}{}{}{}{}{}fn {name}\ {generics}{decl}{where_clause}", if parent == ItemType::Trait { " " } else { "" }, meth.visibility.print_with_space(), header.constness.print_with_space(), header.unsafety.print_with_space(), header.asyncness.print_with_space(), print_default_space(meth.is_default()), print_abi_with_space(header.abi), href = href, name = name, generics = g.print(), decl = Function { decl: d, header_len, indent, asyncness: header.asyncness }.print(), where_clause = WhereClause { gens: g, indent, end_newline } ) } match item.inner { clean::StrippedItem(..) => {} clean::TyMethodItem(ref m) => method(w, item, m.header, &m.generics, &m.decl, link, parent), clean::MethodItem(ref m) => method(w, item, m.header, &m.generics, &m.decl, link, parent), clean::AssocConstItem(ref ty, ref default) => assoc_const( w, item, ty, default.as_ref(), link, if parent == ItemType::Trait { " " } else { "" }, ), clean::AssocTypeItem(ref bounds, ref default) => assoc_type( w, item, bounds, default.as_ref(), link, if parent == ItemType::Trait { " " } else { "" }, ), _ => panic!("render_assoc_item called on non-associated-item"), } } fn item_struct(w: &mut Buffer, cx: &Context, it: &clean::Item, s: &clean::Struct) { wrap_into_docblock(w, |w| { write!(w, "
    ");
            render_attributes(w, it, true);
            render_struct(w, it, Some(&s.generics), s.struct_type, &s.fields, "", true);
            write!(w, "
    ") }); document(w, cx, it); let mut fields = s .fields .iter() .filter_map(|f| match f.inner { clean::StructFieldItem(ref ty) => Some((f, ty)), _ => None, }) .peekable(); if let doctree::Plain = s.struct_type { if fields.peek().is_some() { write!( w, "

    Fields{}

    ", document_non_exhaustive_header(it) ); document_non_exhaustive(w, it); for (field, ty) in fields { let id = cx.derive_id(format!( "{}.{}", ItemType::StructField, field.name.as_ref().unwrap() )); let ns_id = cx.derive_id(format!( "{}.{}", field.name.as_ref().unwrap(), ItemType::StructField.name_space() )); write!( w, "\ \ {name}: {ty}\ ", item_type = ItemType::StructField, id = id, ns_id = ns_id, name = field.name.as_ref().unwrap(), ty = ty.print() ); document(w, cx, field); } } } render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All) } fn item_union(w: &mut Buffer, cx: &Context, it: &clean::Item, s: &clean::Union) { wrap_into_docblock(w, |w| { write!(w, "
    ");
            render_attributes(w, it, true);
            render_union(w, it, Some(&s.generics), &s.fields, "", true);
            write!(w, "
    ") }); document(w, cx, it); let mut fields = s .fields .iter() .filter_map(|f| match f.inner { clean::StructFieldItem(ref ty) => Some((f, ty)), _ => None, }) .peekable(); if fields.peek().is_some() { write!( w, "

    Fields

    " ); for (field, ty) in fields { let name = field.name.as_ref().expect("union field name"); let id = format!("{}.{}", ItemType::StructField, name); write!( w, "\ \ {name}: {ty}\ ", id = id, name = name, shortty = ItemType::StructField, ty = ty.print() ); if let Some(stability_class) = field.stability_class() { write!(w, "", stab = stability_class); } document(w, cx, field); } } render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All) } fn item_enum(w: &mut Buffer, cx: &Context, it: &clean::Item, e: &clean::Enum) { wrap_into_docblock(w, |w| { write!(w, "
    ");
            render_attributes(w, it, true);
            write!(
                w,
                "{}enum {}{}{}",
                it.visibility.print_with_space(),
                it.name.as_ref().unwrap(),
                e.generics.print(),
                WhereClause { gens: &e.generics, indent: 0, end_newline: true }
            );
            if e.variants.is_empty() && !e.variants_stripped {
                write!(w, " {{}}");
            } else {
                write!(w, " {{\n");
                for v in &e.variants {
                    write!(w, "    ");
                    let name = v.name.as_ref().unwrap();
                    match v.inner {
                        clean::VariantItem(ref var) => match var.kind {
                            clean::VariantKind::CLike => write!(w, "{}", name),
                            clean::VariantKind::Tuple(ref tys) => {
                                write!(w, "{}(", name);
                                for (i, ty) in tys.iter().enumerate() {
                                    if i > 0 {
                                        write!(w, ", ")
                                    }
                                    write!(w, "{}", ty.print());
                                }
                                write!(w, ")");
                            }
                            clean::VariantKind::Struct(ref s) => {
                                render_struct(w, v, None, s.struct_type, &s.fields, "    ", false);
                            }
                        },
                        _ => unreachable!(),
                    }
                    write!(w, ",\n");
                }
    
                if e.variants_stripped {
                    write!(w, "    // some variants omitted\n");
                }
                write!(w, "}}");
            }
            write!(w, "
    ") }); document(w, cx, it); if !e.variants.is_empty() { write!( w, "

    Variants{}

    \n", document_non_exhaustive_header(it) ); document_non_exhaustive(w, it); for variant in &e.variants { let id = cx.derive_id(format!("{}.{}", ItemType::Variant, variant.name.as_ref().unwrap())); let ns_id = cx.derive_id(format!( "{}.{}", variant.name.as_ref().unwrap(), ItemType::Variant.name_space() )); write!( w, "
    \ \ {name}", id = id, ns_id = ns_id, name = variant.name.as_ref().unwrap() ); if let clean::VariantItem(ref var) = variant.inner { if let clean::VariantKind::Tuple(ref tys) = var.kind { write!(w, "("); for (i, ty) in tys.iter().enumerate() { if i > 0 { write!(w, ", "); } write!(w, "{}", ty.print()); } write!(w, ")"); } } write!(w, "
    "); document(w, cx, variant); document_non_exhaustive(w, variant); use crate::clean::{Variant, VariantKind}; if let clean::VariantItem(Variant { kind: VariantKind::Struct(ref s) }) = variant.inner { let variant_id = cx.derive_id(format!( "{}.{}.fields", ItemType::Variant, variant.name.as_ref().unwrap() )); write!(w, "
    ", id = variant_id); write!( w, "

    Fields of {name}

    ", name = variant.name.as_ref().unwrap() ); for field in &s.fields { use crate::clean::StructFieldItem; if let StructFieldItem(ref ty) = field.inner { let id = cx.derive_id(format!( "variant.{}.field.{}", variant.name.as_ref().unwrap(), field.name.as_ref().unwrap() )); let ns_id = cx.derive_id(format!( "{}.{}.{}.{}", variant.name.as_ref().unwrap(), ItemType::Variant.name_space(), field.name.as_ref().unwrap(), ItemType::StructField.name_space() )); write!( w, "\ \ {f}: {t}\ ", id = id, ns_id = ns_id, f = field.name.as_ref().unwrap(), t = ty.print() ); document(w, cx, field); } } write!(w, "
    "); } render_stability_since(w, variant, it); } } render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All) } fn render_attribute(attr: &ast::MetaItem) -> Option { let path = pprust::path_to_string(&attr.path); if attr.is_word() { Some(path) } else if let Some(v) = attr.value_str() { Some(format!("{} = {:?}", path, v)) } else if let Some(values) = attr.meta_item_list() { let display: Vec<_> = values .iter() .filter_map(|attr| attr.meta_item().and_then(|mi| render_attribute(mi))) .collect(); if display.len() > 0 { Some(format!("{}({})", path, display.join(", "))) } else { None } } else { None } } const ATTRIBUTE_WHITELIST: &'static [Symbol] = &[ sym::export_name, sym::lang, sym::link_section, sym::must_use, sym::no_mangle, sym::repr, sym::non_exhaustive, ]; // The `top` parameter is used when generating the item declaration to ensure it doesn't have a // left padding. For example: // // #[foo] <----- "top" attribute // struct Foo { // #[bar] <---- not "top" attribute // bar: usize, // } fn render_attributes(w: &mut Buffer, it: &clean::Item, top: bool) { let mut attrs = String::new(); for attr in &it.attrs.other_attrs { if !ATTRIBUTE_WHITELIST.contains(&attr.name_or_empty()) { continue; } if let Some(s) = render_attribute(&attr.meta().unwrap()) { attrs.push_str(&format!("#[{}]\n", s)); } } if attrs.len() > 0 { write!( w, "{}", if top { " top-attr" } else { "" }, &attrs ); } } fn render_struct( w: &mut Buffer, it: &clean::Item, g: Option<&clean::Generics>, ty: doctree::StructType, fields: &[clean::Item], tab: &str, structhead: bool, ) { write!( w, "{}{}{}", it.visibility.print_with_space(), if structhead { "struct " } else { "" }, it.name.as_ref().unwrap() ); if let Some(g) = g { write!(w, "{}", g.print()) } match ty { doctree::Plain => { if let Some(g) = g { write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: true }) } let mut has_visible_fields = false; write!(w, " {{"); for field in fields { if let clean::StructFieldItem(ref ty) = field.inner { write!( w, "\n{} {}{}: {},", tab, field.visibility.print_with_space(), field.name.as_ref().unwrap(), ty.print() ); has_visible_fields = true; } } if has_visible_fields { if it.has_stripped_fields().unwrap() { write!(w, "\n{} // some fields omitted", tab); } write!(w, "\n{}", tab); } else if it.has_stripped_fields().unwrap() { // If there are no visible fields we can just display // `{ /* fields omitted */ }` to save space. write!(w, " /* fields omitted */ "); } write!(w, "}}"); } doctree::Tuple => { write!(w, "("); for (i, field) in fields.iter().enumerate() { if i > 0 { write!(w, ", "); } match field.inner { clean::StrippedItem(box clean::StructFieldItem(..)) => write!(w, "_"), clean::StructFieldItem(ref ty) => { write!(w, "{}{}", field.visibility.print_with_space(), ty.print()) } _ => unreachable!(), } } write!(w, ")"); if let Some(g) = g { write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: false }) } write!(w, ";"); } doctree::Unit => { // Needed for PhantomData. if let Some(g) = g { write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: false }) } write!(w, ";"); } } } fn render_union( w: &mut Buffer, it: &clean::Item, g: Option<&clean::Generics>, fields: &[clean::Item], tab: &str, structhead: bool, ) { write!( w, "{}{}{}", it.visibility.print_with_space(), if structhead { "union " } else { "" }, it.name.as_ref().unwrap() ); if let Some(g) = g { write!(w, "{}", g.print()); write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: true }); } write!(w, " {{\n{}", tab); for field in fields { if let clean::StructFieldItem(ref ty) = field.inner { write!( w, " {}{}: {},\n{}", field.visibility.print_with_space(), field.name.as_ref().unwrap(), ty.print(), tab ); } } if it.has_stripped_fields().unwrap() { write!(w, " // some fields omitted\n{}", tab); } write!(w, "}}"); } #[derive(Copy, Clone)] enum AssocItemLink<'a> { Anchor(Option<&'a str>), GotoSource(DefId, &'a FxHashSet), } impl<'a> AssocItemLink<'a> { fn anchor(&self, id: &'a String) -> Self { match *self { AssocItemLink::Anchor(_) => AssocItemLink::Anchor(Some(&id)), ref other => *other, } } } enum AssocItemRender<'a> { All, DerefFor { trait_: &'a clean::Type, type_: &'a clean::Type, deref_mut_: bool }, } #[derive(Copy, Clone, PartialEq)] enum RenderMode { Normal, ForDeref { mut_: bool }, } fn render_assoc_items( w: &mut Buffer, cx: &Context, containing_item: &clean::Item, it: DefId, what: AssocItemRender<'_>, ) { let c = &cx.cache; let v = match c.impls.get(&it) { Some(v) => v, None => return, }; let (non_trait, traits): (Vec<_>, _) = v.iter().partition(|i| i.inner_impl().trait_.is_none()); if !non_trait.is_empty() { let render_mode = match what { AssocItemRender::All => { write!( w, "\

    \ Methods\

    \ " ); RenderMode::Normal } AssocItemRender::DerefFor { trait_, type_, deref_mut_ } => { write!( w, "\

    \ Methods from {}<Target = {}>\ \

    \ ", trait_.print(), type_.print() ); RenderMode::ForDeref { mut_: deref_mut_ } } }; for i in &non_trait { render_impl( w, cx, i, AssocItemLink::Anchor(None), render_mode, containing_item.stable_since(), true, None, false, true, ); } } if let AssocItemRender::DerefFor { .. } = what { return; } if !traits.is_empty() { let deref_impl = traits.iter().find(|t| t.inner_impl().trait_.def_id() == c.deref_trait_did); if let Some(impl_) = deref_impl { let has_deref_mut = traits .iter() .find(|t| t.inner_impl().trait_.def_id() == c.deref_mut_trait_did) .is_some(); render_deref_methods(w, cx, impl_, containing_item, has_deref_mut); } let (synthetic, concrete): (Vec<&&Impl>, Vec<&&Impl>) = traits.iter().partition(|t| t.inner_impl().synthetic); let (blanket_impl, concrete): (Vec<&&Impl>, _) = concrete.into_iter().partition(|t| t.inner_impl().blanket_impl.is_some()); let mut impls = Buffer::empty_from(&w); render_impls(cx, &mut impls, &concrete, containing_item); let impls = impls.into_inner(); if !impls.is_empty() { write!( w, "\

    \ Trait Implementations\

    \
    {}
    ", impls ); } if !synthetic.is_empty() { write!( w, "\

    \ Auto Trait Implementations\ \

    \
    \ " ); render_impls(cx, w, &synthetic, containing_item); write!(w, "
    "); } if !blanket_impl.is_empty() { write!( w, "\

    \ Blanket Implementations\ \

    \
    \ " ); render_impls(cx, w, &blanket_impl, containing_item); write!(w, "
    "); } } } fn render_deref_methods( w: &mut Buffer, cx: &Context, impl_: &Impl, container_item: &clean::Item, deref_mut: bool, ) { let deref_type = impl_.inner_impl().trait_.as_ref().unwrap(); let (target, real_target) = impl_ .inner_impl() .items .iter() .filter_map(|item| match item.inner { clean::TypedefItem(ref t, true) => { Some(match *t { clean::Typedef { item_type: Some(ref type_), .. } => (&t.type_, type_), _ => (&t.type_, &t.type_), }) } _ => None, }) .next() .expect("Expected associated type binding"); let what = AssocItemRender::DerefFor { trait_: deref_type, type_: target, deref_mut_: deref_mut }; if let Some(did) = real_target.def_id() { render_assoc_items(w, cx, container_item, did, what) } else { if let Some(prim) = real_target.primitive_type() { if let Some(&did) = cx.cache.primitive_locations.get(&prim) { render_assoc_items(w, cx, container_item, did, what); } } } } fn should_render_item(item: &clean::Item, deref_mut_: bool) -> bool { let self_type_opt = match item.inner { clean::MethodItem(ref method) => method.decl.self_type(), clean::TyMethodItem(ref method) => method.decl.self_type(), _ => None, }; if let Some(self_ty) = self_type_opt { let (by_mut_ref, by_box, by_value) = match self_ty { SelfTy::SelfBorrowed(_, mutability) | SelfTy::SelfExplicit(clean::BorrowedRef { mutability, .. }) => { (mutability == Mutability::Mut, false, false) } SelfTy::SelfExplicit(clean::ResolvedPath { did, .. }) => { (false, Some(did) == cache().owned_box_did, false) } SelfTy::SelfValue => (false, false, true), _ => (false, false, false), }; (deref_mut_ || !by_mut_ref) && !by_box && !by_value } else { false } } fn render_spotlight_traits(item: &clean::Item) -> String { match item.inner { clean::FunctionItem(clean::Function { ref decl, .. }) | clean::TyMethodItem(clean::TyMethod { ref decl, .. }) | clean::MethodItem(clean::Method { ref decl, .. }) | clean::ForeignFunctionItem(clean::Function { ref decl, .. }) => spotlight_decl(decl), _ => String::new(), } } fn spotlight_decl(decl: &clean::FnDecl) -> String { let mut out = Buffer::html(); let mut trait_ = String::new(); if let Some(did) = decl.output.def_id() { let c = cache(); if let Some(impls) = c.impls.get(&did) { for i in impls { let impl_ = i.inner_impl(); if impl_.trait_.def_id().map_or(false, |d| c.traits[&d].is_spotlight) { if out.is_empty() { out.push_str(&format!( "

    Important traits for {}

    \ ", impl_.for_.print() )); trait_.push_str(&impl_.for_.print().to_string()); } //use the "where" class here to make it small out.push_str(&format!( "{}", impl_.print() )); let t_did = impl_.trait_.def_id().unwrap(); for it in &impl_.items { if let clean::TypedefItem(ref tydef, _) = it.inner { out.push_str(" "); assoc_type( &mut out, it, &[], Some(&tydef.type_), AssocItemLink::GotoSource(t_did, &FxHashSet::default()), "", ); out.push_str(";"); } } } } } } if !out.is_empty() { out.insert_str( 0, &format!( "
    ⓘ\ Important traits for {}
    \
    ", trait_ ), ); out.push_str("
    "); } out.into_inner() } fn render_impl( w: &mut Buffer, cx: &Context, i: &Impl, link: AssocItemLink<'_>, render_mode: RenderMode, outer_version: Option<&str>, show_def_docs: bool, use_absolute: Option, is_on_foreign_type: bool, show_default_items: bool, ) { if render_mode == RenderMode::Normal { let id = cx.derive_id(match i.inner_impl().trait_ { Some(ref t) => { if is_on_foreign_type { get_id_for_impl_on_foreign_type(&i.inner_impl().for_, t) } else { format!("impl-{}", small_url_encode(&format!("{:#}", t.print()))) } } None => "impl".to_string(), }); if let Some(use_absolute) = use_absolute { write!(w, "

    ", id); fmt_impl_for_trait_page(&i.inner_impl(), w, use_absolute); if show_def_docs { for it in &i.inner_impl().items { if let clean::TypedefItem(ref tydef, _) = it.inner { write!(w, " "); assoc_type( w, it, &vec![], Some(&tydef.type_), AssocItemLink::Anchor(None), "", ); write!(w, ";"); } } } write!(w, ""); } else { write!( w, "

    {}", id, i.inner_impl().print() ); } write!(w, "", id); let since = i.impl_item.stability.as_ref().map(|s| &s.since[..]); render_stability_since_raw(w, since, outer_version); if let Some(l) = cx.src_href(&i.impl_item) { write!(w, "[src]", l, "goto source code"); } write!(w, "

    "); if let Some(ref dox) = cx.shared.maybe_collapsed_doc_value(&i.impl_item) { let mut ids = cx.id_map.borrow_mut(); write!( w, "
    {}
    ", Markdown( &*dox, &i.impl_item.links(), &mut ids, cx.shared.codes, cx.shared.edition, &cx.shared.playground ) .to_string() ); } } fn doc_impl_item( w: &mut Buffer, cx: &Context, item: &clean::Item, link: AssocItemLink<'_>, render_mode: RenderMode, is_default_item: bool, outer_version: Option<&str>, trait_: Option<&clean::Trait>, show_def_docs: bool, ) { let item_type = item.type_(); let name = item.name.as_ref().unwrap(); let render_method_item = match render_mode { RenderMode::Normal => true, RenderMode::ForDeref { mut_: deref_mut_ } => should_render_item(&item, deref_mut_), }; let (is_hidden, extra_class) = if (trait_.is_none() || item.doc_value().is_some() || item.inner.is_associated()) && !is_default_item { (false, "") } else { (true, " hidden") }; match item.inner { clean::MethodItem(clean::Method { ref decl, .. }) | clean::TyMethodItem(clean::TyMethod { ref decl, .. }) => { // Only render when the method is not static or we allow static methods if render_method_item { let id = cx.derive_id(format!("{}.{}", item_type, name)); let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space())); write!(w, "

    ", id, item_type, extra_class); write!(w, "{}", spotlight_decl(decl)); write!(w, "", ns_id); render_assoc_item(w, item, link.anchor(&id), ItemType::Impl); write!(w, ""); render_stability_since_raw(w, item.stable_since(), outer_version); if let Some(l) = cx.src_href(item) { write!( w, "[src]", l, "goto source code" ); } write!(w, "

    "); } } clean::TypedefItem(ref tydef, _) => { let id = cx.derive_id(format!("{}.{}", ItemType::AssocType, name)); let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space())); write!(w, "

    ", id, item_type, extra_class); write!(w, "", ns_id); assoc_type(w, item, &Vec::new(), Some(&tydef.type_), link.anchor(&id), ""); write!(w, "

    "); } clean::AssocConstItem(ref ty, ref default) => { let id = cx.derive_id(format!("{}.{}", item_type, name)); let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space())); write!(w, "

    ", id, item_type, extra_class); write!(w, "", ns_id); assoc_const(w, item, ty, default.as_ref(), link.anchor(&id), ""); write!(w, ""); render_stability_since_raw(w, item.stable_since(), outer_version); if let Some(l) = cx.src_href(item) { write!( w, "[src]", l, "goto source code" ); } write!(w, "

    "); } clean::AssocTypeItem(ref bounds, ref default) => { let id = cx.derive_id(format!("{}.{}", item_type, name)); let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space())); write!(w, "

    ", id, item_type, extra_class); write!(w, "", ns_id); assoc_type(w, item, bounds, default.as_ref(), link.anchor(&id), ""); write!(w, "

    "); } clean::StrippedItem(..) => return, _ => panic!("can't make docs for trait item with name {:?}", item.name), } if render_method_item { if !is_default_item { if let Some(t) = trait_ { // The trait item may have been stripped so we might not // find any documentation or stability for it. if let Some(it) = t.items.iter().find(|i| i.name == item.name) { // We need the stability of the item from the trait // because impls can't have a stability. document_stability(w, cx, it, is_hidden); if item.doc_value().is_some() { document_full(w, item, cx, "", is_hidden); } else if show_def_docs { // In case the item isn't documented, // provide short documentation from the trait. document_short(w, cx, it, link, "", is_hidden); } } } else { document_stability(w, cx, item, is_hidden); if show_def_docs { document_full(w, item, cx, "", is_hidden); } } } else { document_stability(w, cx, item, is_hidden); if show_def_docs { document_short(w, cx, item, link, "", is_hidden); } } } } let traits = &cx.cache.traits; let trait_ = i.trait_did().map(|did| &traits[&did]); write!(w, "
    "); for trait_item in &i.inner_impl().items { doc_impl_item( w, cx, trait_item, link, render_mode, false, outer_version, trait_, show_def_docs, ); } fn render_default_items( w: &mut Buffer, cx: &Context, t: &clean::Trait, i: &clean::Impl, render_mode: RenderMode, outer_version: Option<&str>, show_def_docs: bool, ) { for trait_item in &t.items { let n = trait_item.name.clone(); if i.items.iter().find(|m| m.name == n).is_some() { continue; } let did = i.trait_.as_ref().unwrap().def_id().unwrap(); let assoc_link = AssocItemLink::GotoSource(did, &i.provided_trait_methods); doc_impl_item( w, cx, trait_item, assoc_link, render_mode, true, outer_version, None, show_def_docs, ); } } // If we've implemented a trait, then also emit documentation for all // default items which weren't overridden in the implementation block. // We don't emit documentation for default items if they appear in the // Implementations on Foreign Types or Implementors sections. if show_default_items { if let Some(t) = trait_ { render_default_items( w, cx, t, &i.inner_impl(), render_mode, outer_version, show_def_docs, ); } } write!(w, "
    "); } fn item_opaque_ty(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::OpaqueTy) { write!(w, "
    ");
        render_attributes(w, it, false);
        write!(
            w,
            "type {}{}{where_clause} = impl {bounds};
    ", it.name.as_ref().unwrap(), t.generics.print(), where_clause = WhereClause { gens: &t.generics, indent: 0, end_newline: true }, bounds = bounds(&t.bounds, false) ); document(w, cx, it); // Render any items associated directly to this alias, as otherwise they // won't be visible anywhere in the docs. It would be nice to also show // associated items from the aliased type (see discussion in #32077), but // we need #14072 to make sense of the generics. render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All) } fn item_trait_alias(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::TraitAlias) { write!(w, "
    ");
        render_attributes(w, it, false);
        write!(
            w,
            "trait {}{}{} = {};
    ", it.name.as_ref().unwrap(), t.generics.print(), WhereClause { gens: &t.generics, indent: 0, end_newline: true }, bounds(&t.bounds, true) ); document(w, cx, it); // Render any items associated directly to this alias, as otherwise they // won't be visible anywhere in the docs. It would be nice to also show // associated items from the aliased type (see discussion in #32077), but // we need #14072 to make sense of the generics. render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All) } fn item_typedef(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::Typedef) { write!(w, "
    ");
        render_attributes(w, it, false);
        write!(
            w,
            "type {}{}{where_clause} = {type_};
    ", it.name.as_ref().unwrap(), t.generics.print(), where_clause = WhereClause { gens: &t.generics, indent: 0, end_newline: true }, type_ = t.type_.print() ); document(w, cx, it); // Render any items associated directly to this alias, as otherwise they // won't be visible anywhere in the docs. It would be nice to also show // associated items from the aliased type (see discussion in #32077), but // we need #14072 to make sense of the generics. render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All) } fn item_foreign_type(w: &mut Buffer, cx: &Context, it: &clean::Item) { writeln!(w, "
    extern {{");
        render_attributes(w, it, false);
        write!(
            w,
            "    {}type {};\n}}
    ", it.visibility.print_with_space(), it.name.as_ref().unwrap(), ); document(w, cx, it); render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All) } fn print_sidebar(cx: &Context, it: &clean::Item, buffer: &mut Buffer) { let parentlen = cx.current.len() - if it.is_mod() { 1 } else { 0 }; if it.is_struct() || it.is_trait() || it.is_primitive() || it.is_union() || it.is_enum() || it.is_mod() || it.is_typedef() { write!( buffer, "

    {}{}

    ", match it.inner { clean::StructItem(..) => "Struct ", clean::TraitItem(..) => "Trait ", clean::PrimitiveItem(..) => "Primitive Type ", clean::UnionItem(..) => "Union ", clean::EnumItem(..) => "Enum ", clean::TypedefItem(..) => "Type Definition ", clean::ForeignTypeItem => "Foreign Type ", clean::ModuleItem(..) => if it.is_crate() { "Crate " } else { "Module " }, _ => "", }, it.name.as_ref().unwrap() ); } if it.is_crate() { if let Some(ref version) = cx.cache.crate_version { write!( buffer, "
    \

    Version {}

    \
    ", version ); } } write!(buffer, "
    "); if it.is_crate() { write!( buffer, "

    See all {}'s items

    ", it.name.as_ref().expect("crates always have a name") ); } match it.inner { clean::StructItem(ref s) => sidebar_struct(buffer, it, s), clean::TraitItem(ref t) => sidebar_trait(buffer, it, t), clean::PrimitiveItem(_) => sidebar_primitive(buffer, it), clean::UnionItem(ref u) => sidebar_union(buffer, it, u), clean::EnumItem(ref e) => sidebar_enum(buffer, it, e), clean::TypedefItem(_, _) => sidebar_typedef(buffer, it), clean::ModuleItem(ref m) => sidebar_module(buffer, &m.items), clean::ForeignTypeItem => sidebar_foreign_type(buffer, it), _ => (), } // The sidebar is designed to display sibling functions, modules and // other miscellaneous information. since there are lots of sibling // items (and that causes quadratic growth in large modules), // we refactor common parts into a shared JavaScript file per module. // still, we don't move everything into JS because we want to preserve // as much HTML as possible in order to allow non-JS-enabled browsers // to navigate the documentation (though slightly inefficiently). write!(buffer, "

    "); for (i, name) in cx.current.iter().take(parentlen).enumerate() { if i > 0 { write!(buffer, "::"); } write!( buffer, "{}", &cx.root_path()[..(cx.current.len() - i - 1) * 3], *name ); } write!(buffer, "

    "); // Sidebar refers to the enclosing module, not this module. let relpath = if it.is_mod() { "../" } else { "" }; write!( buffer, "", name = it.name.as_ref().map(|x| &x[..]).unwrap_or(""), ty = it.type_(), path = relpath ); if parentlen == 0 { // There is no sidebar-items.js beyond the crate root path // FIXME maybe dynamic crate loading can be merged here } else { write!(buffer, "", path = relpath); } // Closes sidebar-elems div. write!(buffer, "
    "); } fn get_next_url(used_links: &mut FxHashSet, url: String) -> String { if used_links.insert(url.clone()) { return url; } let mut add = 1; while used_links.insert(format!("{}-{}", url, add)) == false { add += 1; } format!("{}-{}", url, add) } fn get_methods( i: &clean::Impl, for_deref: bool, used_links: &mut FxHashSet, deref_mut: bool, ) -> Vec { i.items .iter() .filter_map(|item| match item.name { Some(ref name) if !name.is_empty() && item.is_method() => { if !for_deref || should_render_item(item, deref_mut) { Some(format!( "{}", get_next_url(used_links, format!("method.{}", name)), name )) } else { None } } _ => None, }) .collect::>() } // The point is to url encode any potential character from a type with genericity. fn small_url_encode(s: &str) -> String { s.replace("<", "%3C") .replace(">", "%3E") .replace(" ", "%20") .replace("?", "%3F") .replace("'", "%27") .replace("&", "%26") .replace(",", "%2C") .replace(":", "%3A") .replace(";", "%3B") .replace("[", "%5B") .replace("]", "%5D") .replace("\"", "%22") } fn sidebar_assoc_items(it: &clean::Item) -> String { let mut out = String::new(); let c = cache(); if let Some(v) = c.impls.get(&it.def_id) { let mut used_links = FxHashSet::default(); { let used_links_bor = &mut used_links; let mut ret = v .iter() .filter(|i| i.inner_impl().trait_.is_none()) .flat_map(move |i| get_methods(i.inner_impl(), false, used_links_bor, false)) .collect::>(); // We want links' order to be reproducible so we don't use unstable sort. ret.sort(); if !ret.is_empty() { out.push_str(&format!( "Methods\
    {}
    ", ret.join("") )); } } if v.iter().any(|i| i.inner_impl().trait_.is_some()) { if let Some(impl_) = v .iter() .filter(|i| i.inner_impl().trait_.is_some()) .find(|i| i.inner_impl().trait_.def_id() == c.deref_trait_did) { if let Some((target, real_target)) = impl_ .inner_impl() .items .iter() .filter_map(|item| match item.inner { clean::TypedefItem(ref t, true) => { Some(match *t { clean::Typedef { item_type: Some(ref type_), .. } => (&t.type_, type_), _ => (&t.type_, &t.type_), }) } _ => None, }) .next() { let inner_impl = real_target .def_id() .or(target .primitive_type() .and_then(|prim| c.primitive_locations.get(&prim).cloned())) .and_then(|did| c.impls.get(&did)); if let Some(impls) = inner_impl { out.push_str(""); out.push_str(&format!( "Methods from {}<Target={}>", Escape(&format!( "{:#}", impl_.inner_impl().trait_.as_ref().unwrap().print() )), Escape(&format!("{:#}", target.print())) )); out.push_str(""); let mut ret = impls .iter() .filter(|i| i.inner_impl().trait_.is_none()) .flat_map(|i| get_methods(i.inner_impl(), true, &mut used_links, true)) .collect::>(); // We want links' order to be reproducible so we don't use unstable sort. ret.sort(); if !ret.is_empty() { out.push_str(&format!( "
    {}
    ", ret.join("") )); } } } } let format_impls = |impls: Vec<&Impl>| { let mut links = FxHashSet::default(); let mut ret = impls .iter() .filter_map(|i| { let is_negative_impl = is_negative_impl(i.inner_impl()); if let Some(ref i) = i.inner_impl().trait_ { let i_display = format!("{:#}", i.print()); let out = Escape(&i_display); let encoded = small_url_encode(&format!("{:#}", i.print())); let generated = format!( "{}{}", encoded, if is_negative_impl { "!" } else { "" }, out ); if links.insert(generated.clone()) { Some(generated) } else { None } } else { None } }) .collect::>(); ret.sort(); ret.join("") }; let (synthetic, concrete): (Vec<&Impl>, Vec<&Impl>) = v.iter().partition::, _>(|i| i.inner_impl().synthetic); let (blanket_impl, concrete): (Vec<&Impl>, Vec<&Impl>) = concrete .into_iter() .partition::, _>(|i| i.inner_impl().blanket_impl.is_some()); let concrete_format = format_impls(concrete); let synthetic_format = format_impls(synthetic); let blanket_format = format_impls(blanket_impl); if !concrete_format.is_empty() { out.push_str( "\ Trait Implementations", ); out.push_str(&format!("
    {}
    ", concrete_format)); } if !synthetic_format.is_empty() { out.push_str( "\ Auto Trait Implementations", ); out.push_str(&format!("
    {}
    ", synthetic_format)); } if !blanket_format.is_empty() { out.push_str( "\ Blanket Implementations", ); out.push_str(&format!("
    {}
    ", blanket_format)); } } } out } fn sidebar_struct(buf: &mut Buffer, it: &clean::Item, s: &clean::Struct) { let mut sidebar = String::new(); let fields = get_struct_fields_name(&s.fields); if !fields.is_empty() { if let doctree::Plain = s.struct_type { sidebar.push_str(&format!( "Fields\
    {}
    ", fields )); } } sidebar.push_str(&sidebar_assoc_items(it)); if !sidebar.is_empty() { write!(buf, "
    {}
    ", sidebar); } } fn get_id_for_impl_on_foreign_type(for_: &clean::Type, trait_: &clean::Type) -> String { small_url_encode(&format!("impl-{:#}-for-{:#}", trait_.print(), for_.print())) } fn extract_for_impl_name(item: &clean::Item) -> Option<(String, String)> { match item.inner { clean::ItemEnum::ImplItem(ref i) => { if let Some(ref trait_) = i.trait_ { Some(( format!("{:#}", i.for_.print()), get_id_for_impl_on_foreign_type(&i.for_, trait_), )) } else { None } } _ => None, } } fn is_negative_impl(i: &clean::Impl) -> bool { i.polarity == Some(clean::ImplPolarity::Negative) } fn sidebar_trait(buf: &mut Buffer, it: &clean::Item, t: &clean::Trait) { let mut sidebar = String::new(); let types = t .items .iter() .filter_map(|m| match m.name { Some(ref name) if m.is_associated_type() => { Some(format!("{name}", name = name)) } _ => None, }) .collect::(); let consts = t .items .iter() .filter_map(|m| match m.name { Some(ref name) if m.is_associated_const() => { Some(format!("{name}", name = name)) } _ => None, }) .collect::(); let mut required = t .items .iter() .filter_map(|m| match m.name { Some(ref name) if m.is_ty_method() => { Some(format!("{name}", name = name)) } _ => None, }) .collect::>(); let mut provided = t .items .iter() .filter_map(|m| match m.name { Some(ref name) if m.is_method() => { Some(format!("{0}", name)) } _ => None, }) .collect::>(); if !types.is_empty() { sidebar.push_str(&format!( "\ Associated Types
    {}
    ", types )); } if !consts.is_empty() { sidebar.push_str(&format!( "\ Associated Constants
    {}
    ", consts )); } if !required.is_empty() { required.sort(); sidebar.push_str(&format!( "\ Required Methods
    {}
    ", required.join("") )); } if !provided.is_empty() { provided.sort(); sidebar.push_str(&format!( "\ Provided Methods
    {}
    ", provided.join("") )); } let c = cache(); if let Some(implementors) = c.implementors.get(&it.def_id) { let mut res = implementors .iter() .filter(|i| i.inner_impl().for_.def_id().map_or(false, |d| !c.paths.contains_key(&d))) .filter_map(|i| match extract_for_impl_name(&i.impl_item) { Some((ref name, ref id)) => { Some(format!("{}", id, Escape(name))) } _ => None, }) .collect::>(); if !res.is_empty() { res.sort(); sidebar.push_str(&format!( "\ Implementations on Foreign Types
    {}
    ", res.join("") )); } } sidebar.push_str("Implementors"); if t.auto { sidebar.push_str( "Auto Implementors", ); } sidebar.push_str(&sidebar_assoc_items(it)); write!(buf, "
    {}
    ", sidebar) } fn sidebar_primitive(buf: &mut Buffer, it: &clean::Item) { let sidebar = sidebar_assoc_items(it); if !sidebar.is_empty() { write!(buf, "
    {}
    ", sidebar); } } fn sidebar_typedef(buf: &mut Buffer, it: &clean::Item) { let sidebar = sidebar_assoc_items(it); if !sidebar.is_empty() { write!(buf, "
    {}
    ", sidebar); } } fn get_struct_fields_name(fields: &[clean::Item]) -> String { fields .iter() .filter(|f| if let clean::StructFieldItem(..) = f.inner { true } else { false }) .filter_map(|f| match f.name { Some(ref name) => Some(format!( "\ {name}", name = name )), _ => None, }) .collect() } fn sidebar_union(buf: &mut Buffer, it: &clean::Item, u: &clean::Union) { let mut sidebar = String::new(); let fields = get_struct_fields_name(&u.fields); if !fields.is_empty() { sidebar.push_str(&format!( "Fields\
    {}
    ", fields )); } sidebar.push_str(&sidebar_assoc_items(it)); if !sidebar.is_empty() { write!(buf, "
    {}
    ", sidebar); } } fn sidebar_enum(buf: &mut Buffer, it: &clean::Item, e: &clean::Enum) { let mut sidebar = String::new(); let variants = e .variants .iter() .filter_map(|v| match v.name { Some(ref name) => Some(format!( "{name}\ ", name = name )), _ => None, }) .collect::(); if !variants.is_empty() { sidebar.push_str(&format!( "Variants\
    {}
    ", variants )); } sidebar.push_str(&sidebar_assoc_items(it)); if !sidebar.is_empty() { write!(buf, "
    {}
    ", sidebar); } } fn item_ty_to_strs(ty: &ItemType) -> (&'static str, &'static str) { match *ty { ItemType::ExternCrate | ItemType::Import => ("reexports", "Re-exports"), ItemType::Module => ("modules", "Modules"), ItemType::Struct => ("structs", "Structs"), ItemType::Union => ("unions", "Unions"), ItemType::Enum => ("enums", "Enums"), ItemType::Function => ("functions", "Functions"), ItemType::Typedef => ("types", "Type Definitions"), ItemType::Static => ("statics", "Statics"), ItemType::Constant => ("constants", "Constants"), ItemType::Trait => ("traits", "Traits"), ItemType::Impl => ("impls", "Implementations"), ItemType::TyMethod => ("tymethods", "Type Methods"), ItemType::Method => ("methods", "Methods"), ItemType::StructField => ("fields", "Struct Fields"), ItemType::Variant => ("variants", "Variants"), ItemType::Macro => ("macros", "Macros"), ItemType::Primitive => ("primitives", "Primitive Types"), ItemType::AssocType => ("associated-types", "Associated Types"), ItemType::AssocConst => ("associated-consts", "Associated Constants"), ItemType::ForeignType => ("foreign-types", "Foreign Types"), ItemType::Keyword => ("keywords", "Keywords"), ItemType::OpaqueTy => ("opaque-types", "Opaque Types"), ItemType::ProcAttribute => ("attributes", "Attribute Macros"), ItemType::ProcDerive => ("derives", "Derive Macros"), ItemType::TraitAlias => ("trait-aliases", "Trait aliases"), } } fn sidebar_module(buf: &mut Buffer, items: &[clean::Item]) { let mut sidebar = String::new(); if items.iter().any(|it| it.type_() == ItemType::ExternCrate || it.type_() == ItemType::Import) { sidebar.push_str(&format!( "
  • {name}
  • ", id = "reexports", name = "Re-exports" )); } // ordering taken from item_module, reorder, where it prioritized elements in a certain order // to print its headings for &myty in &[ ItemType::Primitive, ItemType::Module, ItemType::Macro, ItemType::Struct, ItemType::Enum, ItemType::Constant, ItemType::Static, ItemType::Trait, ItemType::Function, ItemType::Typedef, ItemType::Union, ItemType::Impl, ItemType::TyMethod, ItemType::Method, ItemType::StructField, ItemType::Variant, ItemType::AssocType, ItemType::AssocConst, ItemType::ForeignType, ItemType::Keyword, ] { if items.iter().any(|it| !it.is_stripped() && it.type_() == myty) { let (short, name) = item_ty_to_strs(&myty); sidebar.push_str(&format!( "
  • {name}
  • ", id = short, name = name )); } } if !sidebar.is_empty() { write!(buf, "
      {}
    ", sidebar); } } fn sidebar_foreign_type(buf: &mut Buffer, it: &clean::Item) { let sidebar = sidebar_assoc_items(it); if !sidebar.is_empty() { write!(buf, "
    {}
    ", sidebar); } } fn item_macro(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::Macro) { wrap_into_docblock(w, |w| { w.write_str(&highlight::render_with_highlighting(&t.source, Some("macro"), None, None)) }); document(w, cx, it) } fn item_proc_macro(w: &mut Buffer, cx: &Context, it: &clean::Item, m: &clean::ProcMacro) { let name = it.name.as_ref().expect("proc-macros always have names"); match m.kind { MacroKind::Bang => { write!(w, "
    ");
                write!(w, "{}!() {{ /* proc-macro */ }}", name);
                write!(w, "
    "); } MacroKind::Attr => { write!(w, "
    ");
                write!(w, "#[{}]", name);
                write!(w, "
    "); } MacroKind::Derive => { write!(w, "
    ");
                write!(w, "#[derive({})]", name);
                if !m.helpers.is_empty() {
                    writeln!(w, "\n{{");
                    writeln!(w, "    // Attributes available to this derive:");
                    for attr in &m.helpers {
                        writeln!(w, "    #[{}]", attr);
                    }
                    write!(w, "}}");
                }
                write!(w, "
    "); } } document(w, cx, it) } fn item_primitive(w: &mut Buffer, cx: &Context, it: &clean::Item) { document(w, cx, it); render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All) } fn item_keyword(w: &mut Buffer, cx: &Context, it: &clean::Item) { document(w, cx, it) } crate const BASIC_KEYWORDS: &'static str = "rust, rustlang, rust-lang"; fn make_item_keywords(it: &clean::Item) -> String { format!("{}, {}", BASIC_KEYWORDS, it.name.as_ref().unwrap()) } /// Returns a list of all paths used in the type. /// This is used to help deduplicate imported impls /// for reexported types. If any of the contained /// types are re-exported, we don't use the corresponding /// entry from the js file, as inlining will have already /// picked up the impl fn collect_paths_for_type(first_ty: clean::Type) -> Vec { let mut out = Vec::new(); let mut visited = FxHashSet::default(); let mut work = VecDeque::new(); let cache = cache(); work.push_back(first_ty); while let Some(ty) = work.pop_front() { if !visited.insert(ty.clone()) { continue; } match ty { clean::Type::ResolvedPath { did, .. } => { let get_extern = || cache.external_paths.get(&did).map(|s| s.0.clone()); let fqp = cache.exact_paths.get(&did).cloned().or_else(get_extern); match fqp { Some(path) => { out.push(path.join("::")); } _ => {} }; } clean::Type::Tuple(tys) => { work.extend(tys.into_iter()); } clean::Type::Slice(ty) => { work.push_back(*ty); } clean::Type::Array(ty, _) => { work.push_back(*ty); } clean::Type::RawPointer(_, ty) => { work.push_back(*ty); } clean::Type::BorrowedRef { type_, .. } => { work.push_back(*type_); } clean::Type::QPath { self_type, trait_, .. } => { work.push_back(*self_type); work.push_back(*trait_); } _ => {} } } out } crate fn cache() -> Arc { CACHE_KEY.with(|c| c.borrow().clone()) }