//! This module defines the `DepNode` type which the compiler uses to represent //! nodes in the dependency graph. //! //! A `DepNode` consists of a `DepKind` (which //! specifies the kind of thing it represents, like a piece of HIR, MIR, etc) //! and a `Fingerprint`, a 128-bit hash value the exact meaning of which //! depends on the node's `DepKind`. Together, the kind and the fingerprint //! fully identify a dependency node, even across multiple compilation sessions. //! In other words, the value of the fingerprint does not depend on anything //! that is specific to a given compilation session, like an unpredictable //! interning key (e.g., NodeId, DefId, Symbol) or the numeric value of a //! pointer. The concept behind this could be compared to how git commit hashes //! uniquely identify a given commit and has a few advantages: //! //! * A `DepNode` can simply be serialized to disk and loaded in another session //! without the need to do any "rebasing" (like we have to do for Spans and //! NodeIds) or "retracing" (like we had to do for `DefId` in earlier //! implementations of the dependency graph). //! * A `Fingerprint` is just a bunch of bits, which allows `DepNode` to //! implement `Copy`, `Sync`, `Send`, `Freeze`, etc. //! * Since we just have a bit pattern, `DepNode` can be mapped from disk into //! memory without any post-processing (e.g., "abomination-style" pointer //! reconstruction). //! * Because a `DepNode` is self-contained, we can instantiate `DepNodes` that //! refer to things that do not exist anymore. In previous implementations //! `DepNode` contained a `DefId`. A `DepNode` referring to something that //! had been removed between the previous and the current compilation session //! could not be instantiated because the current compilation session //! contained no `DefId` for thing that had been removed. //! //! `DepNode` definition happens in the `define_dep_nodes!()` macro. This macro //! defines the `DepKind` enum and a corresponding `DepConstructor` enum. The //! `DepConstructor` enum links a `DepKind` to the parameters that are needed at //! runtime in order to construct a valid `DepNode` fingerprint. //! //! Because the macro sees what parameters a given `DepKind` requires, it can //! "infer" some properties for each kind of `DepNode`: //! //! * Whether a `DepNode` of a given kind has any parameters at all. Some //! `DepNode`s could represent global concepts with only one value. //! * Whether it is possible, in principle, to reconstruct a query key from a //! given `DepNode`. Many `DepKind`s only require a single `DefId` parameter, //! in which case it is possible to map the node's fingerprint back to the //! `DefId` it was computed from. In other cases, too much information gets //! lost during fingerprint computation. //! //! The `DepConstructor` enum, together with `DepNode::new()`, ensures that only //! valid `DepNode` instances can be constructed. For example, the API does not //! allow for constructing parameterless `DepNode`s with anything other //! than a zeroed out fingerprint. More generally speaking, it relieves the //! user of the `DepNode` API of having to know how to compute the expected //! fingerprint for a given set of node parameters. use crate::mir::interpret::{GlobalId, LitToConstInput}; use crate::traits; use crate::traits::query::{ CanonicalPredicateGoal, CanonicalProjectionGoal, CanonicalTyGoal, CanonicalTypeOpAscribeUserTypeGoal, CanonicalTypeOpEqGoal, CanonicalTypeOpNormalizeGoal, CanonicalTypeOpProvePredicateGoal, CanonicalTypeOpSubtypeGoal, }; use crate::ty::subst::{GenericArg, SubstsRef}; use crate::ty::{self, ParamEnvAnd, Ty, TyCtxt}; use rustc_data_structures::fingerprint::Fingerprint; use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX}; use rustc_hir::definitions::DefPathHash; use rustc_hir::HirId; use rustc_span::symbol::Symbol; use std::hash::Hash; pub use rustc_query_system::dep_graph::{DepContext, DepNodeParams}; // erase!() just makes tokens go away. It's used to specify which macro argument // is repeated (i.e., which sub-expression of the macro we are in) but don't need // to actually use any of the arguments. macro_rules! erase { ($x:tt) => {{}}; } macro_rules! is_anon_attr { (anon) => { true }; ($attr:ident) => { false }; } macro_rules! is_eval_always_attr { (eval_always) => { true }; ($attr:ident) => { false }; } macro_rules! contains_anon_attr { ($($attr:ident $(($($attr_args:tt)*))* ),*) => ({$(is_anon_attr!($attr) | )* false}); } macro_rules! contains_eval_always_attr { ($($attr:ident $(($($attr_args:tt)*))* ),*) => ({$(is_eval_always_attr!($attr) | )* false}); } macro_rules! define_dep_nodes { (<$tcx:tt> $( [$($attrs:tt)*] $variant:ident $(( $tuple_arg_ty:ty $(,)? ))* ,)* ) => ( #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)] #[allow(non_camel_case_types)] pub enum DepKind { $($variant),* } impl DepKind { #[allow(unreachable_code)] pub fn can_reconstruct_query_key<$tcx>(&self) -> bool { match *self { $( DepKind :: $variant => { if contains_anon_attr!($($attrs)*) { return false; } // tuple args $({ return <$tuple_arg_ty as DepNodeParams>> ::can_reconstruct_query_key(); })* true } )* } } pub fn is_anon(&self) -> bool { match *self { $( DepKind :: $variant => { contains_anon_attr!($($attrs)*) } )* } } pub fn is_eval_always(&self) -> bool { match *self { $( DepKind :: $variant => { contains_eval_always_attr!($($attrs)*) } )* } } #[allow(unreachable_code)] pub fn has_params(&self) -> bool { match *self { $( DepKind :: $variant => { // tuple args $({ erase!($tuple_arg_ty); return true; })* false } )* } } } pub struct DepConstructor; #[allow(non_camel_case_types)] impl DepConstructor { $( #[inline(always)] #[allow(unreachable_code, non_snake_case)] pub fn $variant(_tcx: TyCtxt<'_>, $(arg: $tuple_arg_ty)*) -> DepNode { // tuple args $({ erase!($tuple_arg_ty); return DepNode::construct(_tcx, DepKind::$variant, &arg) })* return DepNode::construct(_tcx, DepKind::$variant, &()) } )* } pub type DepNode = rustc_query_system::dep_graph::DepNode; // We keep a lot of `DepNode`s in memory during compilation. It's not // required that their size stay the same, but we don't want to change // it inadvertently. This assert just ensures we're aware of any change. #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] static_assert_size!(DepNode, 17); #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))] static_assert_size!(DepNode, 24); pub trait DepNodeExt: Sized { /// Construct a DepNode from the given DepKind and DefPathHash. This /// method will assert that the given DepKind actually requires a /// single DefId/DefPathHash parameter. fn from_def_path_hash(def_path_hash: DefPathHash, kind: DepKind) -> Self; /// Extracts the DefId corresponding to this DepNode. This will work /// if two conditions are met: /// /// 1. The Fingerprint of the DepNode actually is a DefPathHash, and /// 2. the item that the DefPath refers to exists in the current tcx. /// /// Condition (1) is determined by the DepKind variant of the /// DepNode. Condition (2) might not be fulfilled if a DepNode /// refers to something from the previous compilation session that /// has been removed. fn extract_def_id(&self, tcx: TyCtxt<'_>) -> Option; /// Used in testing fn from_label_string(label: &str, def_path_hash: DefPathHash) -> Result; /// Used in testing fn has_label_string(label: &str) -> bool; } impl DepNodeExt for DepNode { /// Construct a DepNode from the given DepKind and DefPathHash. This /// method will assert that the given DepKind actually requires a /// single DefId/DefPathHash parameter. fn from_def_path_hash(def_path_hash: DefPathHash, kind: DepKind) -> DepNode { debug_assert!(kind.can_reconstruct_query_key() && kind.has_params()); DepNode { kind, hash: def_path_hash.0.into(), } } /// Extracts the DefId corresponding to this DepNode. This will work /// if two conditions are met: /// /// 1. The Fingerprint of the DepNode actually is a DefPathHash, and /// 2. the item that the DefPath refers to exists in the current tcx. /// /// Condition (1) is determined by the DepKind variant of the /// DepNode. Condition (2) might not be fulfilled if a DepNode /// refers to something from the previous compilation session that /// has been removed. fn extract_def_id(&self, tcx: TyCtxt<'tcx>) -> Option { if self.kind.can_reconstruct_query_key() { let def_path_hash = DefPathHash(self.hash.into()); tcx.def_path_hash_to_def_id.as_ref()?.get(&def_path_hash).cloned() } else { None } } /// Used in testing fn from_label_string(label: &str, def_path_hash: DefPathHash) -> Result { let kind = match label { $( stringify!($variant) => DepKind::$variant, )* _ => return Err(()), }; if !kind.can_reconstruct_query_key() { return Err(()); } if kind.has_params() { Ok(DepNode::from_def_path_hash(def_path_hash, kind)) } else { Ok(DepNode::new_no_params(kind)) } } /// Used in testing fn has_label_string(label: &str) -> bool { match label { $( stringify!($variant) => true, )* _ => false, } } } /// Contains variant => str representations for constructing /// DepNode groups for tests. #[allow(dead_code, non_upper_case_globals)] pub mod label_strs { $( pub const $variant: &str = stringify!($variant); )* } ); } rustc_dep_node_append!([define_dep_nodes!][ <'tcx> // We use this for most things when incr. comp. is turned off. [] Null, // Represents metadata from an extern crate. [eval_always] CrateMetadata(CrateNum), [anon] TraitSelect, [] CompileCodegenUnit(Symbol), ]); impl<'tcx> DepNodeParams> for DefId { #[inline] fn can_reconstruct_query_key() -> bool { true } fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint { tcx.def_path_hash(*self).0 } fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String { tcx.def_path_str(*self) } fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option { dep_node.extract_def_id(tcx) } } impl<'tcx> DepNodeParams> for LocalDefId { #[inline] fn can_reconstruct_query_key() -> bool { true } fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint { self.to_def_id().to_fingerprint(tcx) } fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String { self.to_def_id().to_debug_str(tcx) } fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option { dep_node.extract_def_id(tcx).map(|id| id.expect_local()) } } impl<'tcx> DepNodeParams> for CrateNum { #[inline] fn can_reconstruct_query_key() -> bool { true } fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint { let def_id = DefId { krate: *self, index: CRATE_DEF_INDEX }; tcx.def_path_hash(def_id).0 } fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String { tcx.crate_name(*self).to_string() } fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option { dep_node.extract_def_id(tcx).map(|id| id.krate) } } impl<'tcx> DepNodeParams> for (DefId, DefId) { #[inline] fn can_reconstruct_query_key() -> bool { false } // We actually would not need to specialize the implementation of this // method but it's faster to combine the hashes than to instantiate a full // hashing context and stable-hashing state. fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint { let (def_id_0, def_id_1) = *self; let def_path_hash_0 = tcx.def_path_hash(def_id_0); let def_path_hash_1 = tcx.def_path_hash(def_id_1); def_path_hash_0.0.combine(def_path_hash_1.0) } fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String { let (def_id_0, def_id_1) = *self; format!("({}, {})", tcx.def_path_debug_str(def_id_0), tcx.def_path_debug_str(def_id_1)) } } impl<'tcx> DepNodeParams> for HirId { #[inline] fn can_reconstruct_query_key() -> bool { false } // We actually would not need to specialize the implementation of this // method but it's faster to combine the hashes than to instantiate a full // hashing context and stable-hashing state. fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint { let HirId { owner, local_id } = *self; let def_path_hash = tcx.def_path_hash(owner.to_def_id()); let local_id = Fingerprint::from_smaller_hash(local_id.as_u32().into()); def_path_hash.0.combine(local_id) } }