use super::{AllocId, AllocRange, ConstAllocation, Pointer, Scalar}; use crate::error; use crate::mir::{ConstAlloc, ConstValue}; use crate::ty::{layout, tls, Ty, TyCtxt, ValTree}; use rustc_ast_ir::Mutability; use rustc_data_structures::sync::Lock; use rustc_errors::{DiagArgName, DiagArgValue, DiagMessage, ErrorGuaranteed, IntoDiagArg}; use rustc_macros::HashStable; use rustc_session::CtfeBacktrace; use rustc_span::{def_id::DefId, Span, DUMMY_SP}; use rustc_target::abi::{call, Align, Size, VariantIdx, WrappingRange}; use std::borrow::Cow; use std::{any::Any, backtrace::Backtrace, fmt}; #[derive(Debug, Copy, Clone, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)] pub enum ErrorHandled { /// Already reported an error for this evaluation, and the compilation is /// *guaranteed* to fail. Warnings/lints *must not* produce `Reported`. Reported(ReportedErrorInfo, Span), /// Don't emit an error, the evaluation failed because the MIR was generic /// and the args didn't fully monomorphize it. TooGeneric(Span), } impl From for ErrorHandled { #[inline] fn from(error: ErrorGuaranteed) -> ErrorHandled { ErrorHandled::Reported(error.into(), DUMMY_SP) } } impl ErrorHandled { pub fn with_span(self, span: Span) -> Self { match self { ErrorHandled::Reported(err, _span) => ErrorHandled::Reported(err, span), ErrorHandled::TooGeneric(_span) => ErrorHandled::TooGeneric(span), } } pub fn emit_note(&self, tcx: TyCtxt<'_>) { match self { &ErrorHandled::Reported(err, span) => { if !err.is_tainted_by_errors && !span.is_dummy() { tcx.dcx().emit_note(error::ErroneousConstant { span }); } } &ErrorHandled::TooGeneric(_) => {} } } } #[derive(Debug, Copy, Clone, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)] pub struct ReportedErrorInfo { error: ErrorGuaranteed, is_tainted_by_errors: bool, } impl ReportedErrorInfo { #[inline] pub fn tainted_by_errors(error: ErrorGuaranteed) -> ReportedErrorInfo { ReportedErrorInfo { is_tainted_by_errors: true, error } } } impl From for ReportedErrorInfo { #[inline] fn from(error: ErrorGuaranteed) -> ReportedErrorInfo { ReportedErrorInfo { is_tainted_by_errors: false, error } } } impl Into for ReportedErrorInfo { #[inline] fn into(self) -> ErrorGuaranteed { self.error } } TrivialTypeTraversalImpls! { ErrorHandled } pub type EvalToAllocationRawResult<'tcx> = Result, ErrorHandled>; pub type EvalStaticInitializerRawResult<'tcx> = Result, ErrorHandled>; pub type EvalToConstValueResult<'tcx> = Result, ErrorHandled>; /// `Ok(None)` indicates the constant was fine, but the valtree couldn't be constructed. /// This is needed in `thir::pattern::lower_inline_const`. pub type EvalToValTreeResult<'tcx> = Result>, ErrorHandled>; #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] static_assert_size!(InterpErrorInfo<'_>, 8); /// Packages the kind of error we got from the const code interpreter /// up with a Rust-level backtrace of where the error occurred. /// These should always be constructed by calling `.into()` on /// an `InterpError`. In `rustc_mir::interpret`, we have `throw_err_*` /// macros for this. #[derive(Debug)] pub struct InterpErrorInfo<'tcx>(Box>); #[derive(Debug)] struct InterpErrorInfoInner<'tcx> { kind: InterpError<'tcx>, backtrace: InterpErrorBacktrace, } #[derive(Debug)] pub struct InterpErrorBacktrace { backtrace: Option>, } impl InterpErrorBacktrace { pub fn new() -> InterpErrorBacktrace { let capture_backtrace = tls::with_opt(|tcx| { if let Some(tcx) = tcx { *Lock::borrow(&tcx.sess.ctfe_backtrace) } else { CtfeBacktrace::Disabled } }); let backtrace = match capture_backtrace { CtfeBacktrace::Disabled => None, CtfeBacktrace::Capture => Some(Box::new(Backtrace::force_capture())), CtfeBacktrace::Immediate => { // Print it now. let backtrace = Backtrace::force_capture(); print_backtrace(&backtrace); None } }; InterpErrorBacktrace { backtrace } } pub fn print_backtrace(&self) { if let Some(backtrace) = self.backtrace.as_ref() { print_backtrace(backtrace); } } } impl<'tcx> InterpErrorInfo<'tcx> { pub fn into_parts(self) -> (InterpError<'tcx>, InterpErrorBacktrace) { let InterpErrorInfo(box InterpErrorInfoInner { kind, backtrace }) = self; (kind, backtrace) } pub fn into_kind(self) -> InterpError<'tcx> { let InterpErrorInfo(box InterpErrorInfoInner { kind, .. }) = self; kind } #[inline] pub fn kind(&self) -> &InterpError<'tcx> { &self.0.kind } } fn print_backtrace(backtrace: &Backtrace) { eprintln!("\n\nAn error occurred in the MIR interpreter:\n{backtrace}"); } impl From for InterpErrorInfo<'_> { fn from(err: ErrorGuaranteed) -> Self { InterpError::InvalidProgram(InvalidProgramInfo::AlreadyReported(err.into())).into() } } impl From for InterpErrorInfo<'_> { fn from(err: ErrorHandled) -> Self { InterpError::InvalidProgram(match err { ErrorHandled::Reported(r, _span) => InvalidProgramInfo::AlreadyReported(r), ErrorHandled::TooGeneric(_span) => InvalidProgramInfo::TooGeneric, }) .into() } } impl<'tcx> From> for InterpErrorInfo<'tcx> { fn from(kind: InterpError<'tcx>) -> Self { InterpErrorInfo(Box::new(InterpErrorInfoInner { kind, backtrace: InterpErrorBacktrace::new(), })) } } /// Error information for when the program we executed turned out not to actually be a valid /// program. This cannot happen in stand-alone Miri, but it can happen during CTFE/ConstProp /// where we work on generic code or execution does not have all information available. #[derive(Debug)] pub enum InvalidProgramInfo<'tcx> { /// Resolution can fail if we are in a too generic context. TooGeneric, /// Abort in case errors are already reported. AlreadyReported(ReportedErrorInfo), /// An error occurred during layout computation. Layout(layout::LayoutError<'tcx>), /// An error occurred during FnAbi computation: the passed --target lacks FFI support /// (which unfortunately typeck does not reject). /// Not using `FnAbiError` as that contains a nested `LayoutError`. FnAbiAdjustForForeignAbi(call::AdjustForForeignAbiError), } /// Details of why a pointer had to be in-bounds. #[derive(Debug, Copy, Clone)] pub enum CheckInAllocMsg { /// We are access memory. MemoryAccessTest, /// We are doing pointer arithmetic. PointerArithmeticTest, /// We are doing pointer offset_from. OffsetFromTest, /// None of the above -- generic/unspecific inbounds test. InboundsTest, } /// Details of which pointer is not aligned. #[derive(Debug, Copy, Clone)] pub enum CheckAlignMsg { /// The accessed pointer did not have proper alignment. AccessedPtr, /// The access ocurred with a place that was based on a misaligned pointer. BasedOn, } #[derive(Debug, Copy, Clone)] pub enum InvalidMetaKind { /// Size of a `[T]` is too big SliceTooBig, /// Size of a DST is too big TooBig, } impl IntoDiagArg for InvalidMetaKind { fn into_diag_arg(self) -> DiagArgValue { DiagArgValue::Str(Cow::Borrowed(match self { InvalidMetaKind::SliceTooBig => "slice_too_big", InvalidMetaKind::TooBig => "too_big", })) } } /// Details of an access to uninitialized bytes / bad pointer bytes where it is not allowed. #[derive(Debug, Clone, Copy)] pub struct BadBytesAccess { /// Range of the original memory access. pub access: AllocRange, /// Range of the bad memory that was encountered. (Might not be maximal.) pub bad: AllocRange, } /// Information about a size mismatch. #[derive(Debug)] pub struct ScalarSizeMismatch { pub target_size: u64, pub data_size: u64, } /// Information about a misaligned pointer. #[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)] pub struct Misalignment { pub has: Align, pub required: Align, } macro_rules! impl_into_diag_arg_through_debug { ($($ty:ty),*$(,)?) => {$( impl IntoDiagArg for $ty { fn into_diag_arg(self) -> DiagArgValue { DiagArgValue::Str(Cow::Owned(format!("{self:?}"))) } } )*} } // These types have nice `Debug` output so we can just use them in diagnostics. impl_into_diag_arg_through_debug! { AllocId, Pointer, AllocRange, } /// Error information for when the program caused Undefined Behavior. #[derive(Debug)] pub enum UndefinedBehaviorInfo<'tcx> { /// Free-form case. Only for errors that are never caught! Used by miri Ub(String), // FIXME(fee1-dead) these should all be actual variants of the enum instead of dynamically // dispatched /// A custom (free-form) fluent-translated error, created by `err_ub_custom!`. Custom(crate::error::CustomSubdiagnostic<'tcx>), /// Validation error. ValidationError(ValidationErrorInfo<'tcx>), /// Unreachable code was executed. Unreachable, /// A slice/array index projection went out-of-bounds. BoundsCheckFailed { len: u64, index: u64 }, /// Something was divided by 0 (x / 0). DivisionByZero, /// Something was "remainded" by 0 (x % 0). RemainderByZero, /// Signed division overflowed (INT_MIN / -1). DivisionOverflow, /// Signed remainder overflowed (INT_MIN % -1). RemainderOverflow, /// Overflowing inbounds pointer arithmetic. PointerArithOverflow, /// Invalid metadata in a wide pointer InvalidMeta(InvalidMetaKind), /// Reading a C string that does not end within its allocation. UnterminatedCString(Pointer), /// Using a pointer after it got freed. PointerUseAfterFree(AllocId, CheckInAllocMsg), /// Used a pointer outside the bounds it is valid for. /// (If `ptr_size > 0`, determines the size of the memory range that was expected to be in-bounds.) PointerOutOfBounds { alloc_id: AllocId, alloc_size: Size, ptr_offset: i64, ptr_size: Size, msg: CheckInAllocMsg, }, /// Using an integer as a pointer in the wrong way. DanglingIntPointer(u64, CheckInAllocMsg), /// Used a pointer with bad alignment. AlignmentCheckFailed(Misalignment, CheckAlignMsg), /// Writing to read-only memory. WriteToReadOnly(AllocId), /// Trying to access the data behind a function pointer. DerefFunctionPointer(AllocId), /// Trying to access the data behind a vtable pointer. DerefVTablePointer(AllocId), /// Using a non-boolean `u8` as bool. InvalidBool(u8), /// Using a non-character `u32` as character. InvalidChar(u32), /// The tag of an enum does not encode an actual discriminant. InvalidTag(Scalar), /// Using a pointer-not-to-a-function as function pointer. InvalidFunctionPointer(Pointer), /// Using a pointer-not-to-a-vtable as vtable pointer. InvalidVTablePointer(Pointer), /// Using a string that is not valid UTF-8, InvalidStr(std::str::Utf8Error), /// Using uninitialized data where it is not allowed. InvalidUninitBytes(Option<(AllocId, BadBytesAccess)>), /// Working with a local that is not currently live. DeadLocal, /// Data size is not equal to target size. ScalarSizeMismatch(ScalarSizeMismatch), /// A discriminant of an uninhabited enum variant is written. UninhabitedEnumVariantWritten(VariantIdx), /// An uninhabited enum variant is projected. UninhabitedEnumVariantRead(VariantIdx), /// Trying to set discriminant to the niched variant, but the value does not match. InvalidNichedEnumVariantWritten { enum_ty: Ty<'tcx> }, /// ABI-incompatible argument types. AbiMismatchArgument { caller_ty: Ty<'tcx>, callee_ty: Ty<'tcx> }, /// ABI-incompatible return types. AbiMismatchReturn { caller_ty: Ty<'tcx>, callee_ty: Ty<'tcx> }, } #[derive(Debug, Clone, Copy)] pub enum PointerKind { Ref(Mutability), Box, } impl IntoDiagArg for PointerKind { fn into_diag_arg(self) -> DiagArgValue { DiagArgValue::Str( match self { Self::Ref(_) => "ref", Self::Box => "box", } .into(), ) } } #[derive(Debug)] pub struct ValidationErrorInfo<'tcx> { pub path: Option, pub kind: ValidationErrorKind<'tcx>, } #[derive(Debug)] pub enum ExpectedKind { Reference, Box, RawPtr, InitScalar, Bool, Char, Float, Int, FnPtr, EnumTag, Str, } impl From for ExpectedKind { fn from(x: PointerKind) -> ExpectedKind { match x { PointerKind::Box => ExpectedKind::Box, PointerKind::Ref(_) => ExpectedKind::Reference, } } } #[derive(Debug)] pub enum ValidationErrorKind<'tcx> { PointerAsInt { expected: ExpectedKind }, PartialPointer, PtrToUninhabited { ptr_kind: PointerKind, ty: Ty<'tcx> }, PtrToStatic { ptr_kind: PointerKind }, ConstRefToMutable, ConstRefToExtern, MutableRefToImmutable, UnsafeCellInImmutable, NullFnPtr, NeverVal, NullablePtrOutOfRange { range: WrappingRange, max_value: u128 }, PtrOutOfRange { range: WrappingRange, max_value: u128 }, OutOfRange { value: String, range: WrappingRange, max_value: u128 }, UninhabitedVal { ty: Ty<'tcx> }, InvalidEnumTag { value: String }, UninhabitedEnumVariant, Uninit { expected: ExpectedKind }, InvalidVTablePtr { value: String }, InvalidMetaSliceTooLarge { ptr_kind: PointerKind }, InvalidMetaTooLarge { ptr_kind: PointerKind }, UnalignedPtr { ptr_kind: PointerKind, required_bytes: u64, found_bytes: u64 }, NullPtr { ptr_kind: PointerKind }, DanglingPtrNoProvenance { ptr_kind: PointerKind, pointer: String }, DanglingPtrOutOfBounds { ptr_kind: PointerKind }, DanglingPtrUseAfterFree { ptr_kind: PointerKind }, InvalidBool { value: String }, InvalidChar { value: String }, InvalidFnPtr { value: String }, } /// Error information for when the program did something that might (or might not) be correct /// to do according to the Rust spec, but due to limitations in the interpreter, the /// operation could not be carried out. These limitations can differ between CTFE and the /// Miri engine, e.g., CTFE does not support dereferencing pointers at integral addresses. #[derive(Debug)] pub enum UnsupportedOpInfo { /// Free-form case. Only for errors that are never caught! // FIXME still use translatable diagnostics Unsupported(String), /// Unsized local variables. UnsizedLocal, // // The variants below are only reachable from CTFE/const prop, miri will never emit them. // /// Overwriting parts of a pointer; without knowing absolute addresses, the resulting state /// cannot be represented by the CTFE interpreter. OverwritePartialPointer(Pointer), /// Attempting to read or copy parts of a pointer to somewhere else; without knowing absolute /// addresses, the resulting state cannot be represented by the CTFE interpreter. ReadPartialPointer(Pointer), /// Encountered a pointer where we needed an integer. ReadPointerAsInt(Option<(AllocId, BadBytesAccess)>), /// Accessing thread local statics ThreadLocalStatic(DefId), /// Accessing an unsupported extern static. ExternStatic(DefId), } /// Error information for when the program exhausted the resources granted to it /// by the interpreter. #[derive(Debug)] pub enum ResourceExhaustionInfo { /// The stack grew too big. StackFrameLimitReached, /// There is not enough memory (on the host) to perform an allocation. MemoryExhausted, /// The address space (of the target) is full. AddressSpaceFull, } /// A trait for machine-specific errors (or other "machine stop" conditions). pub trait MachineStopType: Any + fmt::Debug + Send { /// The diagnostic message for this error fn diagnostic_message(&self) -> DiagMessage; /// Add diagnostic arguments by passing name and value pairs to `adder`, which are passed to /// fluent for formatting the translated diagnostic message. fn add_args(self: Box, adder: &mut dyn FnMut(DiagArgName, DiagArgValue)); } impl dyn MachineStopType { #[inline(always)] pub fn downcast_ref(&self) -> Option<&T> { let x: &dyn Any = self; x.downcast_ref() } } #[derive(Debug)] pub enum InterpError<'tcx> { /// The program caused undefined behavior. UndefinedBehavior(UndefinedBehaviorInfo<'tcx>), /// The program did something the interpreter does not support (some of these *might* be UB /// but the interpreter is not sure). Unsupported(UnsupportedOpInfo), /// The program was invalid (ill-typed, bad MIR, not sufficiently monomorphized, ...). InvalidProgram(InvalidProgramInfo<'tcx>), /// The program exhausted the interpreter's resources (stack/heap too big, /// execution takes too long, ...). ResourceExhaustion(ResourceExhaustionInfo), /// Stop execution for a machine-controlled reason. This is never raised by /// the core engine itself. MachineStop(Box), } pub type InterpResult<'tcx, T = ()> = Result>; impl InterpError<'_> { /// Some errors do string formatting even if the error is never printed. /// To avoid performance issues, there are places where we want to be sure to never raise these formatting errors, /// so this method lets us detect them and `bug!` on unexpected errors. pub fn formatted_string(&self) -> bool { matches!( self, InterpError::Unsupported(UnsupportedOpInfo::Unsupported(_)) | InterpError::UndefinedBehavior(UndefinedBehaviorInfo::ValidationError { .. }) | InterpError::UndefinedBehavior(UndefinedBehaviorInfo::Ub(_)) ) } }