// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The main parser interface use rustc_data_structures::sync::{Lrc, Lock}; use ast::{self, CrateConfig}; use codemap::{CodeMap, FilePathMapping}; use syntax_pos::{self, Span, FileMap, NO_EXPANSION, FileName}; use errors::{Handler, ColorConfig, DiagnosticBuilder}; use feature_gate::UnstableFeatures; use parse::parser::Parser; use ptr::P; use str::char_at; use symbol::Symbol; use tokenstream::{TokenStream, TokenTree}; use diagnostics::plugin::ErrorMap; use std::borrow::Cow; use std::collections::HashSet; use std::iter; use std::path::{Path, PathBuf}; use std::str; pub type PResult<'a, T> = Result>; #[macro_use] pub mod parser; pub mod lexer; pub mod token; pub mod attr; pub mod classify; /// Info about a parsing session. pub struct ParseSess { pub span_diagnostic: Handler, pub unstable_features: UnstableFeatures, pub config: CrateConfig, pub missing_fragment_specifiers: Lock>, /// Places where raw identifiers were used. This is used for feature gating /// raw identifiers pub raw_identifier_spans: Lock>, /// The registered diagnostics codes crate registered_diagnostics: Lock, // Spans where a `mod foo;` statement was included in a non-mod.rs file. // These are used to issue errors if the non_modrs_mods feature is not enabled. pub non_modrs_mods: Lock>, /// Used to determine and report recursive mod inclusions included_mod_stack: Lock>, code_map: Lrc, } impl ParseSess { pub fn new(file_path_mapping: FilePathMapping) -> Self { let cm = Lrc::new(CodeMap::new(file_path_mapping)); let handler = Handler::with_tty_emitter(ColorConfig::Auto, true, false, Some(cm.clone())); ParseSess::with_span_handler(handler, cm) } pub fn with_span_handler(handler: Handler, code_map: Lrc) -> ParseSess { ParseSess { span_diagnostic: handler, unstable_features: UnstableFeatures::from_environment(), config: HashSet::new(), missing_fragment_specifiers: Lock::new(HashSet::new()), raw_identifier_spans: Lock::new(Vec::new()), registered_diagnostics: Lock::new(ErrorMap::new()), included_mod_stack: Lock::new(vec![]), code_map, non_modrs_mods: Lock::new(vec![]), } } pub fn codemap(&self) -> &CodeMap { &self.code_map } } #[derive(Clone)] pub struct Directory<'a> { pub path: Cow<'a, Path>, pub ownership: DirectoryOwnership, } #[derive(Copy, Clone)] pub enum DirectoryOwnership { Owned { // None if `mod.rs`, `Some("foo")` if we're in `foo.rs` relative: Option, }, UnownedViaBlock, UnownedViaMod(bool /* legacy warnings? */), } // a bunch of utility functions of the form parse__from_ // where includes crate, expr, item, stmt, tts, and one that // uses a HOF to parse anything, and includes file and // source_str. pub fn parse_crate_from_file<'a>(input: &Path, sess: &'a ParseSess) -> PResult<'a, ast::Crate> { let mut parser = new_parser_from_file(sess, input); parser.parse_crate_mod() } pub fn parse_crate_attrs_from_file<'a>(input: &Path, sess: &'a ParseSess) -> PResult<'a, Vec> { let mut parser = new_parser_from_file(sess, input); parser.parse_inner_attributes() } pub fn parse_crate_from_source_str(name: FileName, source: String, sess: &ParseSess) -> PResult { new_parser_from_source_str(sess, name, source).parse_crate_mod() } pub fn parse_crate_attrs_from_source_str(name: FileName, source: String, sess: &ParseSess) -> PResult> { new_parser_from_source_str(sess, name, source).parse_inner_attributes() } crate fn parse_expr_from_source_str(name: FileName, source: String, sess: &ParseSess) -> PResult> { new_parser_from_source_str(sess, name, source).parse_expr() } /// Parses an item. /// /// Returns `Ok(Some(item))` when successful, `Ok(None)` when no item was found, and `Err` /// when a syntax error occurred. crate fn parse_item_from_source_str(name: FileName, source: String, sess: &ParseSess) -> PResult>> { new_parser_from_source_str(sess, name, source).parse_item() } crate fn parse_stmt_from_source_str(name: FileName, source: String, sess: &ParseSess) -> PResult> { new_parser_from_source_str(sess, name, source).parse_stmt() } pub fn parse_stream_from_source_str(name: FileName, source: String, sess: &ParseSess, override_span: Option) -> TokenStream { filemap_to_stream(sess, sess.codemap().new_filemap(name, source), override_span) } // Create a new parser from a source string pub fn new_parser_from_source_str(sess: &ParseSess, name: FileName, source: String) -> Parser { let mut parser = filemap_to_parser(sess, sess.codemap().new_filemap(name, source)); parser.recurse_into_file_modules = false; parser } /// Create a new parser, handling errors as appropriate /// if the file doesn't exist pub fn new_parser_from_file<'a>(sess: &'a ParseSess, path: &Path) -> Parser<'a> { filemap_to_parser(sess, file_to_filemap(sess, path, None)) } /// Given a session, a crate config, a path, and a span, add /// the file at the given path to the codemap, and return a parser. /// On an error, use the given span as the source of the problem. crate fn new_sub_parser_from_file<'a>(sess: &'a ParseSess, path: &Path, directory_ownership: DirectoryOwnership, module_name: Option, sp: Span) -> Parser<'a> { let mut p = filemap_to_parser(sess, file_to_filemap(sess, path, Some(sp))); p.directory.ownership = directory_ownership; p.root_module_name = module_name; p } /// Given a filemap and config, return a parser fn filemap_to_parser(sess: & ParseSess, filemap: Lrc) -> Parser { let end_pos = filemap.end_pos; let mut parser = stream_to_parser(sess, filemap_to_stream(sess, filemap, None)); if parser.token == token::Eof && parser.span == syntax_pos::DUMMY_SP { parser.span = Span::new(end_pos, end_pos, NO_EXPANSION); } parser } // must preserve old name for now, because quote! from the *existing* // compiler expands into it pub fn new_parser_from_tts(sess: &ParseSess, tts: Vec) -> Parser { stream_to_parser(sess, tts.into_iter().collect()) } // base abstractions /// Given a session and a path and an optional span (for error reporting), /// add the path to the session's codemap and return the new filemap. fn file_to_filemap(sess: &ParseSess, path: &Path, spanopt: Option) -> Lrc { match sess.codemap().load_file(path) { Ok(filemap) => filemap, Err(e) => { let msg = format!("couldn't read {:?}: {}", path.display(), e); match spanopt { Some(sp) => sess.span_diagnostic.span_fatal(sp, &msg).raise(), None => sess.span_diagnostic.fatal(&msg).raise() } } } } /// Given a filemap, produce a sequence of token-trees pub fn filemap_to_stream(sess: &ParseSess, filemap: Lrc, override_span: Option) -> TokenStream { let mut srdr = lexer::StringReader::new(sess, filemap, override_span); srdr.real_token(); panictry!(srdr.parse_all_token_trees()) } /// Given stream and the `ParseSess`, produce a parser pub fn stream_to_parser(sess: &ParseSess, stream: TokenStream) -> Parser { Parser::new(sess, stream, None, true, false) } /// Parse a string representing a character literal into its final form. /// Rather than just accepting/rejecting a given literal, unescapes it as /// well. Can take any slice prefixed by a character escape. Returns the /// character and the number of characters consumed. fn char_lit(lit: &str, diag: Option<(Span, &Handler)>) -> (char, isize) { use std::char; // Handle non-escaped chars first. if lit.as_bytes()[0] != b'\\' { // If the first byte isn't '\\' it might part of a multi-byte char, so // get the char with chars(). let c = lit.chars().next().unwrap(); return (c, 1); } // Handle escaped chars. match lit.as_bytes()[1] as char { '"' => ('"', 2), 'n' => ('\n', 2), 'r' => ('\r', 2), 't' => ('\t', 2), '\\' => ('\\', 2), '\'' => ('\'', 2), '0' => ('\0', 2), 'x' => { let v = u32::from_str_radix(&lit[2..4], 16).unwrap(); let c = char::from_u32(v).unwrap(); (c, 4) } 'u' => { assert_eq!(lit.as_bytes()[2], b'{'); let idx = lit.find('}').unwrap(); // All digits and '_' are ascii, so treat each byte as a char. let mut v: u32 = 0; for c in lit[3..idx].bytes() { let c = char::from(c); if c != '_' { let x = c.to_digit(16).unwrap(); v = v.checked_mul(16).unwrap().checked_add(x).unwrap(); } } let c = char::from_u32(v).unwrap_or_else(|| { if let Some((span, diag)) = diag { let mut diag = diag.struct_span_err(span, "invalid unicode character escape"); if v > 0x10FFFF { diag.help("unicode escape must be at most 10FFFF").emit(); } else { diag.help("unicode escape must not be a surrogate").emit(); } } '\u{FFFD}' }); (c, (idx + 1) as isize) } _ => panic!("lexer should have rejected a bad character escape {}", lit) } } /// Parse a string representing a string literal into its final form. Does /// unescaping. fn str_lit(lit: &str, diag: Option<(Span, &Handler)>) -> String { debug!("str_lit: given {}", lit.escape_default()); let mut res = String::with_capacity(lit.len()); let error = |i| format!("lexer should have rejected {} at {}", lit, i); /// Eat everything up to a non-whitespace fn eat<'a>(it: &mut iter::Peekable>) { loop { match it.peek().map(|x| x.1) { Some(' ') | Some('\n') | Some('\r') | Some('\t') => { it.next(); }, _ => { break; } } } } let mut chars = lit.char_indices().peekable(); while let Some((i, c)) = chars.next() { match c { '\\' => { let ch = chars.peek().unwrap_or_else(|| { panic!("{}", error(i)) }).1; if ch == '\n' { eat(&mut chars); } else if ch == '\r' { chars.next(); let ch = chars.peek().unwrap_or_else(|| { panic!("{}", error(i)) }).1; if ch != '\n' { panic!("lexer accepted bare CR"); } eat(&mut chars); } else { // otherwise, a normal escape let (c, n) = char_lit(&lit[i..], diag); for _ in 0..n - 1 { // we don't need to move past the first \ chars.next(); } res.push(c); } }, '\r' => { let ch = chars.peek().unwrap_or_else(|| { panic!("{}", error(i)) }).1; if ch != '\n' { panic!("lexer accepted bare CR"); } chars.next(); res.push('\n'); } c => res.push(c), } } res.shrink_to_fit(); // probably not going to do anything, unless there was an escape. debug!("parse_str_lit: returning {}", res); res } /// Parse a string representing a raw string literal into its final form. The /// only operation this does is convert embedded CRLF into a single LF. fn raw_str_lit(lit: &str) -> String { debug!("raw_str_lit: given {}", lit.escape_default()); let mut res = String::with_capacity(lit.len()); let mut chars = lit.chars().peekable(); while let Some(c) = chars.next() { if c == '\r' { if *chars.peek().unwrap() != '\n' { panic!("lexer accepted bare CR"); } chars.next(); res.push('\n'); } else { res.push(c); } } res.shrink_to_fit(); res } // check if `s` looks like i32 or u1234 etc. fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool { s.len() > 1 && first_chars.contains(&char_at(s, 0)) && s[1..].chars().all(|c| '0' <= c && c <= '9') } macro_rules! err { ($opt_diag:expr, |$span:ident, $diag:ident| $($body:tt)*) => { match $opt_diag { Some(($span, $diag)) => { $($body)* } None => return None, } } } crate fn lit_token(lit: token::Lit, suf: Option, diag: Option<(Span, &Handler)>) -> (bool /* suffix illegal? */, Option) { use ast::LitKind; match lit { token::Byte(i) => (true, Some(LitKind::Byte(byte_lit(&i.as_str()).0))), token::Char(i) => (true, Some(LitKind::Char(char_lit(&i.as_str(), diag).0))), // There are some valid suffixes for integer and float literals, // so all the handling is done internally. token::Integer(s) => (false, integer_lit(&s.as_str(), suf, diag)), token::Float(s) => (false, float_lit(&s.as_str(), suf, diag)), token::Str_(mut sym) => { // If there are no characters requiring special treatment we can // reuse the symbol from the Token. Otherwise, we must generate a // new symbol because the string in the LitKind is different to the // string in the Token. let s = &sym.as_str(); if s.as_bytes().iter().any(|&c| c == b'\\' || c == b'\r') { sym = Symbol::intern(&str_lit(s, diag)); } (true, Some(LitKind::Str(sym, ast::StrStyle::Cooked))) } token::StrRaw(mut sym, n) => { // Ditto. let s = &sym.as_str(); if s.contains('\r') { sym = Symbol::intern(&raw_str_lit(s)); } (true, Some(LitKind::Str(sym, ast::StrStyle::Raw(n)))) } token::ByteStr(i) => { (true, Some(LitKind::ByteStr(byte_str_lit(&i.as_str())))) } token::ByteStrRaw(i, _) => { (true, Some(LitKind::ByteStr(Lrc::new(i.to_string().into_bytes())))) } } } fn filtered_float_lit(data: Symbol, suffix: Option, diag: Option<(Span, &Handler)>) -> Option { debug!("filtered_float_lit: {}, {:?}", data, suffix); let suffix = match suffix { Some(suffix) => suffix, None => return Some(ast::LitKind::FloatUnsuffixed(data)), }; Some(match &*suffix.as_str() { "f32" => ast::LitKind::Float(data, ast::FloatTy::F32), "f64" => ast::LitKind::Float(data, ast::FloatTy::F64), suf => { err!(diag, |span, diag| { if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) { // if it looks like a width, lets try to be helpful. let msg = format!("invalid width `{}` for float literal", &suf[1..]); diag.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit() } else { let msg = format!("invalid suffix `{}` for float literal", suf); diag.struct_span_err(span, &msg) .help("valid suffixes are `f32` and `f64`") .emit(); } }); ast::LitKind::FloatUnsuffixed(data) } }) } fn float_lit(s: &str, suffix: Option, diag: Option<(Span, &Handler)>) -> Option { debug!("float_lit: {:?}, {:?}", s, suffix); // FIXME #2252: bounds checking float literals is deferred until trans let s = s.chars().filter(|&c| c != '_').collect::(); filtered_float_lit(Symbol::intern(&s), suffix, diag) } /// Parse a string representing a byte literal into its final form. Similar to `char_lit` fn byte_lit(lit: &str) -> (u8, usize) { let err = |i| format!("lexer accepted invalid byte literal {} step {}", lit, i); if lit.len() == 1 { (lit.as_bytes()[0], 1) } else { assert_eq!(lit.as_bytes()[0], b'\\', "{}", err(0)); let b = match lit.as_bytes()[1] { b'"' => b'"', b'n' => b'\n', b'r' => b'\r', b't' => b'\t', b'\\' => b'\\', b'\'' => b'\'', b'0' => b'\0', _ => { match u64::from_str_radix(&lit[2..4], 16).ok() { Some(c) => if c > 0xFF { panic!(err(2)) } else { return (c as u8, 4) }, None => panic!(err(3)) } } }; (b, 2) } } fn byte_str_lit(lit: &str) -> Lrc> { let mut res = Vec::with_capacity(lit.len()); let error = |i| format!("lexer should have rejected {} at {}", lit, i); /// Eat everything up to a non-whitespace fn eat>(it: &mut iter::Peekable) { loop { match it.peek().map(|x| x.1) { Some(b' ') | Some(b'\n') | Some(b'\r') | Some(b'\t') => { it.next(); }, _ => { break; } } } } // byte string literals *must* be ASCII, but the escapes don't have to be let mut chars = lit.bytes().enumerate().peekable(); loop { match chars.next() { Some((i, b'\\')) => { let em = error(i); match chars.peek().expect(&em).1 { b'\n' => eat(&mut chars), b'\r' => { chars.next(); if chars.peek().expect(&em).1 != b'\n' { panic!("lexer accepted bare CR"); } eat(&mut chars); } _ => { // otherwise, a normal escape let (c, n) = byte_lit(&lit[i..]); // we don't need to move past the first \ for _ in 0..n - 1 { chars.next(); } res.push(c); } } }, Some((i, b'\r')) => { let em = error(i); if chars.peek().expect(&em).1 != b'\n' { panic!("lexer accepted bare CR"); } chars.next(); res.push(b'\n'); } Some((_, c)) => res.push(c), None => break, } } Lrc::new(res) } fn integer_lit(s: &str, suffix: Option, diag: Option<(Span, &Handler)>) -> Option { // s can only be ascii, byte indexing is fine let s2 = s.chars().filter(|&c| c != '_').collect::(); let mut s = &s2[..]; debug!("integer_lit: {}, {:?}", s, suffix); let mut base = 10; let orig = s; let mut ty = ast::LitIntType::Unsuffixed; if char_at(s, 0) == '0' && s.len() > 1 { match char_at(s, 1) { 'x' => base = 16, 'o' => base = 8, 'b' => base = 2, _ => { } } } // 1f64 and 2f32 etc. are valid float literals. if let Some(suf) = suffix { if looks_like_width_suffix(&['f'], &suf.as_str()) { let err = match base { 16 => Some("hexadecimal float literal is not supported"), 8 => Some("octal float literal is not supported"), 2 => Some("binary float literal is not supported"), _ => None, }; if let Some(err) = err { err!(diag, |span, diag| diag.span_err(span, err)); } return filtered_float_lit(Symbol::intern(s), Some(suf), diag) } } if base != 10 { s = &s[2..]; } if let Some(suf) = suffix { if suf.as_str().is_empty() { err!(diag, |span, diag| diag.span_bug(span, "found empty literal suffix in Some")); } ty = match &*suf.as_str() { "isize" => ast::LitIntType::Signed(ast::IntTy::Isize), "i8" => ast::LitIntType::Signed(ast::IntTy::I8), "i16" => ast::LitIntType::Signed(ast::IntTy::I16), "i32" => ast::LitIntType::Signed(ast::IntTy::I32), "i64" => ast::LitIntType::Signed(ast::IntTy::I64), "i128" => ast::LitIntType::Signed(ast::IntTy::I128), "usize" => ast::LitIntType::Unsigned(ast::UintTy::Usize), "u8" => ast::LitIntType::Unsigned(ast::UintTy::U8), "u16" => ast::LitIntType::Unsigned(ast::UintTy::U16), "u32" => ast::LitIntType::Unsigned(ast::UintTy::U32), "u64" => ast::LitIntType::Unsigned(ast::UintTy::U64), "u128" => ast::LitIntType::Unsigned(ast::UintTy::U128), suf => { // i and u look like widths, so lets // give an error message along those lines err!(diag, |span, diag| { if looks_like_width_suffix(&['i', 'u'], suf) { let msg = format!("invalid width `{}` for integer literal", &suf[1..]); diag.struct_span_err(span, &msg) .help("valid widths are 8, 16, 32, 64 and 128") .emit(); } else { let msg = format!("invalid suffix `{}` for numeric literal", suf); diag.struct_span_err(span, &msg) .help("the suffix must be one of the integral types \ (`u32`, `isize`, etc)") .emit(); } }); ty } } } debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \ string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix); Some(match u128::from_str_radix(s, base) { Ok(r) => ast::LitKind::Int(r, ty), Err(_) => { // small bases are lexed as if they were base 10, e.g, the string // might be `0b10201`. This will cause the conversion above to fail, // but these cases have errors in the lexer: we don't want to emit // two errors, and we especially don't want to emit this error since // it isn't necessarily true. let already_errored = base < 10 && s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base)); if !already_errored { err!(diag, |span, diag| diag.span_err(span, "int literal is too large")); } ast::LitKind::Int(0, ty) } }) } #[cfg(test)] mod tests { use super::*; use syntax_pos::{self, Span, BytePos, Pos, NO_EXPANSION}; use codemap::{respan, Spanned}; use ast::{self, Ident, PatKind}; use rustc_target::spec::abi::Abi; use attr::first_attr_value_str_by_name; use parse; use parse::parser::Parser; use print::pprust::item_to_string; use ptr::P; use tokenstream::{self, TokenTree}; use util::parser_testing::{string_to_stream, string_to_parser}; use util::parser_testing::{string_to_expr, string_to_item, string_to_stmt}; use util::ThinVec; use with_globals; // produce a syntax_pos::span fn sp(a: u32, b: u32) -> Span { Span::new(BytePos(a), BytePos(b), NO_EXPANSION) } fn str2seg(s: &str, lo: u32, hi: u32) -> ast::PathSegment { ast::PathSegment::from_ident(Ident::new(Symbol::intern(s), sp(lo, hi))) } #[test] fn path_exprs_1() { with_globals(|| { assert!(string_to_expr("a".to_string()) == P(ast::Expr{ id: ast::DUMMY_NODE_ID, node: ast::ExprKind::Path(None, ast::Path { span: sp(0, 1), segments: vec![str2seg("a", 0, 1)], }), span: sp(0, 1), attrs: ThinVec::new(), })) }) } #[test] fn path_exprs_2 () { with_globals(|| { assert!(string_to_expr("::a::b".to_string()) == P(ast::Expr { id: ast::DUMMY_NODE_ID, node: ast::ExprKind::Path(None, ast::Path { span: sp(0, 6), segments: vec![ast::PathSegment::crate_root(sp(0, 0)), str2seg("a", 2, 3), str2seg("b", 5, 6)] }), span: sp(0, 6), attrs: ThinVec::new(), })) }) } #[should_panic] #[test] fn bad_path_expr_1() { with_globals(|| { string_to_expr("::abc::def::return".to_string()); }) } // check the token-tree-ization of macros #[test] fn string_to_tts_macro () { with_globals(|| { let tts: Vec<_> = string_to_stream("macro_rules! zip (($a)=>($a))".to_string()).trees().collect(); let tts: &[TokenTree] = &tts[..]; match (tts.len(), tts.get(0), tts.get(1), tts.get(2), tts.get(3)) { ( 4, Some(&TokenTree::Token(_, token::Ident(name_macro_rules, false))), Some(&TokenTree::Token(_, token::Not)), Some(&TokenTree::Token(_, token::Ident(name_zip, false))), Some(&TokenTree::Delimited(_, ref macro_delimed)), ) if name_macro_rules.name == "macro_rules" && name_zip.name == "zip" => { let tts = ¯o_delimed.stream().trees().collect::>(); match (tts.len(), tts.get(0), tts.get(1), tts.get(2)) { ( 3, Some(&TokenTree::Delimited(_, ref first_delimed)), Some(&TokenTree::Token(_, token::FatArrow)), Some(&TokenTree::Delimited(_, ref second_delimed)), ) if macro_delimed.delim == token::Paren => { let tts = &first_delimed.stream().trees().collect::>(); match (tts.len(), tts.get(0), tts.get(1)) { ( 2, Some(&TokenTree::Token(_, token::Dollar)), Some(&TokenTree::Token(_, token::Ident(ident, false))), ) if first_delimed.delim == token::Paren && ident.name == "a" => {}, _ => panic!("value 3: {:?}", *first_delimed), } let tts = &second_delimed.stream().trees().collect::>(); match (tts.len(), tts.get(0), tts.get(1)) { ( 2, Some(&TokenTree::Token(_, token::Dollar)), Some(&TokenTree::Token(_, token::Ident(ident, false))), ) if second_delimed.delim == token::Paren && ident.name == "a" => {}, _ => panic!("value 4: {:?}", *second_delimed), } }, _ => panic!("value 2: {:?}", *macro_delimed), } }, _ => panic!("value: {:?}",tts), } }) } #[test] fn string_to_tts_1() { with_globals(|| { let tts = string_to_stream("fn a (b : i32) { b; }".to_string()); let expected = TokenStream::concat(vec![ TokenTree::Token(sp(0, 2), token::Ident(Ident::from_str("fn"), false)).into(), TokenTree::Token(sp(3, 4), token::Ident(Ident::from_str("a"), false)).into(), TokenTree::Delimited( sp(5, 14), tokenstream::Delimited { delim: token::DelimToken::Paren, tts: TokenStream::concat(vec![ TokenTree::Token(sp(6, 7), token::Ident(Ident::from_str("b"), false)).into(), TokenTree::Token(sp(8, 9), token::Colon).into(), TokenTree::Token(sp(10, 13), token::Ident(Ident::from_str("i32"), false)).into(), ]).into(), }).into(), TokenTree::Delimited( sp(15, 21), tokenstream::Delimited { delim: token::DelimToken::Brace, tts: TokenStream::concat(vec![ TokenTree::Token(sp(17, 18), token::Ident(Ident::from_str("b"), false)).into(), TokenTree::Token(sp(18, 19), token::Semi).into(), ]).into(), }).into() ]); assert_eq!(tts, expected); }) } #[test] fn ret_expr() { with_globals(|| { assert!(string_to_expr("return d".to_string()) == P(ast::Expr{ id: ast::DUMMY_NODE_ID, node:ast::ExprKind::Ret(Some(P(ast::Expr{ id: ast::DUMMY_NODE_ID, node:ast::ExprKind::Path(None, ast::Path{ span: sp(7, 8), segments: vec![str2seg("d", 7, 8)], }), span:sp(7,8), attrs: ThinVec::new(), }))), span:sp(0,8), attrs: ThinVec::new(), })) }) } #[test] fn parse_stmt_1 () { with_globals(|| { assert!(string_to_stmt("b;".to_string()) == Some(ast::Stmt { node: ast::StmtKind::Expr(P(ast::Expr { id: ast::DUMMY_NODE_ID, node: ast::ExprKind::Path(None, ast::Path { span:sp(0,1), segments: vec![str2seg("b", 0, 1)], }), span: sp(0,1), attrs: ThinVec::new()})), id: ast::DUMMY_NODE_ID, span: sp(0,1)})) }) } fn parser_done(p: Parser){ assert_eq!(p.token.clone(), token::Eof); } #[test] fn parse_ident_pat () { with_globals(|| { let sess = ParseSess::new(FilePathMapping::empty()); let mut parser = string_to_parser(&sess, "b".to_string()); assert!(panictry!(parser.parse_pat()) == P(ast::Pat{ id: ast::DUMMY_NODE_ID, node: PatKind::Ident(ast::BindingMode::ByValue(ast::Mutability::Immutable), Ident::new(Symbol::intern("b"), sp(0, 1)), None), span: sp(0,1)})); parser_done(parser); }) } // check the contents of the tt manually: #[test] fn parse_fundecl () { with_globals(|| { // this test depends on the intern order of "fn" and "i32" let item = string_to_item("fn a (b : i32) { b; }".to_string()).map(|m| { m.map(|mut m| { m.tokens = None; m }) }); assert_eq!(item, Some( P(ast::Item{ident:Ident::from_str("a"), attrs:Vec::new(), id: ast::DUMMY_NODE_ID, tokens: None, node: ast::ItemKind::Fn(P(ast::FnDecl { inputs: vec![ast::Arg{ ty: P(ast::Ty{id: ast::DUMMY_NODE_ID, node: ast::TyKind::Path(None, ast::Path{ span:sp(10,13), segments: vec![str2seg("i32", 10, 13)], }), span:sp(10,13) }), pat: P(ast::Pat { id: ast::DUMMY_NODE_ID, node: PatKind::Ident( ast::BindingMode::ByValue( ast::Mutability::Immutable), Ident::new(Symbol::intern("b"), sp(6, 7)), None ), span: sp(6,7) }), id: ast::DUMMY_NODE_ID }], output: ast::FunctionRetTy::Default(sp(15, 15)), variadic: false }), ast::Unsafety::Normal, Spanned { span: sp(0,2), node: ast::Constness::NotConst, }, Abi::Rust, ast::Generics{ params: Vec::new(), where_clause: ast::WhereClause { id: ast::DUMMY_NODE_ID, predicates: Vec::new(), span: syntax_pos::DUMMY_SP, }, span: syntax_pos::DUMMY_SP, }, P(ast::Block { stmts: vec![ast::Stmt { node: ast::StmtKind::Semi(P(ast::Expr{ id: ast::DUMMY_NODE_ID, node: ast::ExprKind::Path(None, ast::Path{ span:sp(17,18), segments: vec![str2seg("b", 17, 18)], }), span: sp(17,18), attrs: ThinVec::new()})), id: ast::DUMMY_NODE_ID, span: sp(17,19)}], id: ast::DUMMY_NODE_ID, rules: ast::BlockCheckMode::Default, // no idea span: sp(15,21), recovered: false, })), vis: respan(sp(0, 0), ast::VisibilityKind::Inherited), span: sp(0,21)}))); }) } #[test] fn parse_use() { with_globals(|| { let use_s = "use foo::bar::baz;"; let vitem = string_to_item(use_s.to_string()).unwrap(); let vitem_s = item_to_string(&vitem); assert_eq!(&vitem_s[..], use_s); let use_s = "use foo::bar as baz;"; let vitem = string_to_item(use_s.to_string()).unwrap(); let vitem_s = item_to_string(&vitem); assert_eq!(&vitem_s[..], use_s); }) } #[test] fn parse_extern_crate() { with_globals(|| { let ex_s = "extern crate foo;"; let vitem = string_to_item(ex_s.to_string()).unwrap(); let vitem_s = item_to_string(&vitem); assert_eq!(&vitem_s[..], ex_s); let ex_s = "extern crate foo as bar;"; let vitem = string_to_item(ex_s.to_string()).unwrap(); let vitem_s = item_to_string(&vitem); assert_eq!(&vitem_s[..], ex_s); }) } fn get_spans_of_pat_idents(src: &str) -> Vec { let item = string_to_item(src.to_string()).unwrap(); struct PatIdentVisitor { spans: Vec } impl<'a> ::visit::Visitor<'a> for PatIdentVisitor { fn visit_pat(&mut self, p: &'a ast::Pat) { match p.node { PatKind::Ident(_ , ref spannedident, _) => { self.spans.push(spannedident.span.clone()); } _ => { ::visit::walk_pat(self, p); } } } } let mut v = PatIdentVisitor { spans: Vec::new() }; ::visit::walk_item(&mut v, &item); return v.spans; } #[test] fn span_of_self_arg_pat_idents_are_correct() { with_globals(|| { let srcs = ["impl z { fn a (&self, &myarg: i32) {} }", "impl z { fn a (&mut self, &myarg: i32) {} }", "impl z { fn a (&'a self, &myarg: i32) {} }", "impl z { fn a (self, &myarg: i32) {} }", "impl z { fn a (self: Foo, &myarg: i32) {} }", ]; for &src in &srcs { let spans = get_spans_of_pat_idents(src); let (lo, hi) = (spans[0].lo(), spans[0].hi()); assert!("self" == &src[lo.to_usize()..hi.to_usize()], "\"{}\" != \"self\". src=\"{}\"", &src[lo.to_usize()..hi.to_usize()], src) } }) } #[test] fn parse_exprs () { with_globals(|| { // just make sure that they parse.... string_to_expr("3 + 4".to_string()); string_to_expr("a::z.froob(b,&(987+3))".to_string()); }) } #[test] fn attrs_fix_bug () { with_globals(|| { string_to_item("pub fn mk_file_writer(path: &Path, flags: &[FileFlag]) -> Result, String> { #[cfg(windows)] fn wb() -> c_int { (O_WRONLY | libc::consts::os::extra::O_BINARY) as c_int } #[cfg(unix)] fn wb() -> c_int { O_WRONLY as c_int } let mut fflags: c_int = wb(); }".to_string()); }) } #[test] fn crlf_doc_comments() { with_globals(|| { let sess = ParseSess::new(FilePathMapping::empty()); let name = FileName::Custom("source".to_string()); let source = "/// doc comment\r\nfn foo() {}".to_string(); let item = parse_item_from_source_str(name.clone(), source, &sess) .unwrap().unwrap(); let doc = first_attr_value_str_by_name(&item.attrs, "doc").unwrap(); assert_eq!(doc, "/// doc comment"); let source = "/// doc comment\r\n/// line 2\r\nfn foo() {}".to_string(); let item = parse_item_from_source_str(name.clone(), source, &sess) .unwrap().unwrap(); let docs = item.attrs.iter().filter(|a| a.path == "doc") .map(|a| a.value_str().unwrap().to_string()).collect::>(); let b: &[_] = &["/// doc comment".to_string(), "/// line 2".to_string()]; assert_eq!(&docs[..], b); let source = "/** doc comment\r\n * with CRLF */\r\nfn foo() {}".to_string(); let item = parse_item_from_source_str(name, source, &sess).unwrap().unwrap(); let doc = first_attr_value_str_by_name(&item.attrs, "doc").unwrap(); assert_eq!(doc, "/** doc comment\n * with CRLF */"); }); } #[test] fn ttdelim_span() { with_globals(|| { let sess = ParseSess::new(FilePathMapping::empty()); let expr = parse::parse_expr_from_source_str(PathBuf::from("foo").into(), "foo!( fn main() { body } )".to_string(), &sess).unwrap(); let tts: Vec<_> = match expr.node { ast::ExprKind::Mac(ref mac) => mac.node.stream().trees().collect(), _ => panic!("not a macro"), }; let span = tts.iter().rev().next().unwrap().span(); match sess.codemap().span_to_snippet(span) { Ok(s) => assert_eq!(&s[..], "{ body }"), Err(_) => panic!("could not get snippet"), } }); } // This tests that when parsing a string (rather than a file) we don't try // and read in a file for a module declaration and just parse a stub. // See `recurse_into_file_modules` in the parser. #[test] fn out_of_line_mod() { with_globals(|| { let sess = ParseSess::new(FilePathMapping::empty()); let item = parse_item_from_source_str( PathBuf::from("foo").into(), "mod foo { struct S; mod this_does_not_exist; }".to_owned(), &sess, ).unwrap().unwrap(); if let ast::ItemKind::Mod(ref m) = item.node { assert!(m.items.len() == 2); } else { panic!(); } }); } } /// `SeqSep` : a sequence separator (token) /// and whether a trailing separator is allowed. pub struct SeqSep { pub sep: Option, pub trailing_sep_allowed: bool, } impl SeqSep { pub fn trailing_allowed(t: token::Token) -> SeqSep { SeqSep { sep: Some(t), trailing_sep_allowed: true, } } pub fn none() -> SeqSep { SeqSep { sep: None, trailing_sep_allowed: false, } } }