//! This is an NFA-based parser, which calls out to the main Rust parser for named non-terminals //! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads //! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in //! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier //! fit for Macro-by-Example-style rules. //! //! (In order to prevent the pathological case, we'd need to lazily construct the resulting //! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old //! items, but it would also save overhead) //! //! We don't say this parser uses the Earley algorithm, because it's unnecessarily inaccurate. //! The macro parser restricts itself to the features of finite state automata. Earley parsers //! can be described as an extension of NFAs with completion rules, prediction rules, and recursion. //! //! Quick intro to how the parser works: //! //! A 'position' is a dot in the middle of a matcher, usually represented as a //! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`. //! //! The parser walks through the input a character at a time, maintaining a list //! of threads consistent with the current position in the input string: `cur_items`. //! //! As it processes them, it fills up `eof_items` with threads that would be valid if //! the macro invocation is now over, `bb_items` with threads that are waiting on //! a Rust non-terminal like `$e:expr`, and `next_items` with threads that are waiting //! on a particular token. Most of the logic concerns moving the · through the //! repetitions indicated by Kleene stars. The rules for moving the · without //! consuming any input are called epsilon transitions. It only advances or calls //! out to the real Rust parser when no `cur_items` threads remain. //! //! Example: //! //! ```text, ignore //! Start parsing a a a a b against [· a $( a )* a b]. //! //! Remaining input: a a a a b //! next: [· a $( a )* a b] //! //! - - - Advance over an a. - - - //! //! Remaining input: a a a b //! cur: [a · $( a )* a b] //! Descend/Skip (first item). //! next: [a $( · a )* a b] [a $( a )* · a b]. //! //! - - - Advance over an a. - - - //! //! Remaining input: a a b //! cur: [a $( a · )* a b] [a $( a )* a · b] //! Follow epsilon transition: Finish/Repeat (first item) //! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b] //! //! - - - Advance over an a. - - - (this looks exactly like the last step) //! //! Remaining input: a b //! cur: [a $( a · )* a b] [a $( a )* a · b] //! Follow epsilon transition: Finish/Repeat (first item) //! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b] //! //! - - - Advance over an a. - - - (this looks exactly like the last step) //! //! Remaining input: b //! cur: [a $( a · )* a b] [a $( a )* a · b] //! Follow epsilon transition: Finish/Repeat (first item) //! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b] //! //! - - - Advance over a b. - - - //! //! Remaining input: '' //! eof: [a $( a )* a b ·] //! ``` crate use NamedMatch::*; crate use ParseResult::*; use TokenTreeOrTokenTreeSlice::*; use crate::mbe::{self, TokenTree}; use rustc_ast::token::{self, DocComment, Nonterminal, Token}; use rustc_parse::parser::Parser; use rustc_session::parse::ParseSess; use rustc_span::symbol::MacroRulesNormalizedIdent; use smallvec::{smallvec, SmallVec}; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::sync::Lrc; use rustc_span::symbol::Ident; use std::borrow::Cow; use std::collections::hash_map::Entry::{Occupied, Vacant}; use std::mem; use std::ops::{Deref, DerefMut}; // To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body. /// Either a sequence of token trees or a single one. This is used as the representation of the /// sequence of tokens that make up a matcher. #[derive(Clone)] enum TokenTreeOrTokenTreeSlice<'tt> { Tt(TokenTree), TtSeq(&'tt [TokenTree]), } impl<'tt> TokenTreeOrTokenTreeSlice<'tt> { /// Returns the number of constituent top-level token trees of `self` (top-level in that it /// will not recursively descend into subtrees). fn len(&self) -> usize { match *self { TtSeq(ref v) => v.len(), Tt(ref tt) => tt.len(), } } /// The `index`-th token tree of `self`. fn get_tt(&self, index: usize) -> TokenTree { match *self { TtSeq(ref v) => v[index].clone(), Tt(ref tt) => tt.get_tt(index), } } } /// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`. /// /// This is used by `parse_tt_inner` to keep track of delimited submatchers that we have /// descended into. #[derive(Clone)] struct MatcherTtFrame<'tt> { /// The "parent" matcher that we are descending into. elts: TokenTreeOrTokenTreeSlice<'tt>, /// The position of the "dot" in `elts` at the time we descended. idx: usize, } type NamedMatchVec = SmallVec<[NamedMatch; 4]>; /// Represents a single "position" (aka "matcher position", aka "item"), as /// described in the module documentation. /// /// Here: /// /// - `'root` represents the lifetime of the stack slot that holds the root /// `MatcherPos`. As described in `MatcherPosHandle`, the root `MatcherPos` /// structure is stored on the stack, but subsequent instances are put into /// the heap. /// - `'tt` represents the lifetime of the token trees that this matcher /// position refers to. /// /// It is important to distinguish these two lifetimes because we have a /// `SmallVec>` below, and the destructor of /// that is considered to possibly access the data from its elements (it lacks /// a `#[may_dangle]` attribute). As a result, the compiler needs to know that /// all the elements in that `SmallVec` strictly outlive the root stack slot /// lifetime. By separating `'tt` from `'root`, we can show that. #[derive(Clone)] struct MatcherPos<'root, 'tt> { /// The token or sequence of tokens that make up the matcher. `elts` is short for "elements". top_elts: TokenTreeOrTokenTreeSlice<'tt>, /// The position of the "dot" in this matcher idx: usize, /// For each named metavar in the matcher, we keep track of token trees matched against the /// metavar by the black box parser. In particular, there may be more than one match per /// metavar if we are in a repetition (each repetition matches each of the variables). /// Moreover, matchers and repetitions can be nested; the `matches` field is shared (hence the /// `Rc`) among all "nested" matchers. `match_lo`, `match_cur`, and `match_hi` keep track of /// the current position of the `self` matcher position in the shared `matches` list. /// /// Also, note that while we are descending into a sequence, matchers are given their own /// `matches` vector. Only once we reach the end of a full repetition of the sequence do we add /// all bound matches from the submatcher into the shared top-level `matches` vector. If `sep` /// and `up` are `Some`, then `matches` is _not_ the shared top-level list. Instead, if one /// wants the shared `matches`, one should use `up.matches`. matches: Box<[Lrc]>, /// The position in `matches` corresponding to the first metavar in this matcher's sequence of /// token trees. In other words, the first metavar in the first token of `top_elts` corresponds /// to `matches[match_lo]`. match_lo: usize, /// The position in `matches` corresponding to the metavar we are currently trying to match /// against the source token stream. `match_lo <= match_cur <= match_hi`. match_cur: usize, /// Similar to `match_lo` except `match_hi` is the position in `matches` of the _last_ metavar /// in this matcher. match_hi: usize, /// This field is only used if we are matching a repetition. repetition: Option>, /// Specifically used to "unzip" token trees. By "unzip", we mean to unwrap the delimiters from /// a delimited token tree (e.g., something wrapped in `(` `)`) or to get the contents of a doc /// comment... /// /// When matching against matchers with nested delimited submatchers (e.g., `pat ( pat ( .. ) /// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does /// that where the bottom of the stack is the outermost matcher. /// Also, throughout the comments, this "descent" is often referred to as "unzipping"... stack: SmallVec<[MatcherTtFrame<'tt>; 1]>, } // This type is used a lot. Make sure it doesn't unintentionally get bigger. #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] rustc_data_structures::static_assert_size!(MatcherPos<'_, '_>, 240); impl<'root, 'tt> MatcherPos<'root, 'tt> { /// Generates the top-level matcher position in which the "dot" is before the first token of /// the matcher `ms`. fn new(ms: &'tt [TokenTree]) -> Self { let match_idx_hi = count_names(ms); MatcherPos { // Start with the top level matcher given to us. top_elts: TtSeq(ms), // The "dot" is before the first token of the matcher. idx: 0, // Initialize `matches` to a bunch of empty `Vec`s -- one for each metavar in // `top_elts`. `match_lo` for `top_elts` is 0 and `match_hi` is `match_idx_hi`. // `match_cur` is 0 since we haven't actually matched anything yet. matches: create_matches(match_idx_hi), match_lo: 0, match_cur: 0, match_hi: match_idx_hi, // Haven't descended into any delimiters, so this is empty. stack: smallvec![], // Haven't descended into any sequences, so this is `None`. repetition: None, } } /// Adds `m` as a named match for the `idx`-th metavar. fn push_match(&mut self, idx: usize, m: NamedMatch) { let matches = Lrc::make_mut(&mut self.matches[idx]); matches.push(m); } } #[derive(Clone)] struct MatcherPosRepetition<'root, 'tt> { /// The KleeneOp of this sequence. seq_op: mbe::KleeneOp, /// The separator. sep: Option, /// The "parent" matcher position. That is, the matcher position just before we enter the /// sequence. up: MatcherPosHandle<'root, 'tt>, } // Lots of MatcherPos instances are created at runtime. Allocating them on the // heap is slow. Furthermore, using SmallVec to allocate them all // on the stack is also slow, because MatcherPos is quite a large type and // instances get moved around a lot between vectors, which requires lots of // slow memcpy calls. // // Therefore, the initial MatcherPos is always allocated on the stack, // subsequent ones (of which there aren't that many) are allocated on the heap, // and this type is used to encapsulate both cases. enum MatcherPosHandle<'root, 'tt> { Ref(&'root mut MatcherPos<'root, 'tt>), Box(Box>), } impl<'root, 'tt> Clone for MatcherPosHandle<'root, 'tt> { // This always produces a new Box. fn clone(&self) -> Self { MatcherPosHandle::Box(match *self { MatcherPosHandle::Ref(ref r) => Box::new((**r).clone()), MatcherPosHandle::Box(ref b) => b.clone(), }) } } impl<'root, 'tt> Deref for MatcherPosHandle<'root, 'tt> { type Target = MatcherPos<'root, 'tt>; fn deref(&self) -> &Self::Target { match *self { MatcherPosHandle::Ref(ref r) => r, MatcherPosHandle::Box(ref b) => b, } } } impl<'root, 'tt> DerefMut for MatcherPosHandle<'root, 'tt> { fn deref_mut(&mut self) -> &mut MatcherPos<'root, 'tt> { match *self { MatcherPosHandle::Ref(ref mut r) => r, MatcherPosHandle::Box(ref mut b) => b, } } } enum EofItems<'root, 'tt> { None, One(MatcherPosHandle<'root, 'tt>), Multiple, } /// Represents the possible results of an attempted parse. crate enum ParseResult { /// Parsed successfully. Success(T), /// Arm failed to match. If the second parameter is `token::Eof`, it indicates an unexpected /// end of macro invocation. Otherwise, it indicates that no rules expected the given token. Failure(Token, &'static str), /// Fatal error (malformed macro?). Abort compilation. Error(rustc_span::Span, String), ErrorReported, } /// A `ParseResult` where the `Success` variant contains a mapping of /// `MacroRulesNormalizedIdent`s to `NamedMatch`es. This represents the mapping /// of metavars to the token trees they bind to. crate type NamedParseResult = ParseResult>; /// Count how many metavars are named in the given matcher `ms`. pub(super) fn count_names(ms: &[TokenTree]) -> usize { ms.iter().fold(0, |count, elt| { count + match *elt { TokenTree::Delimited(_, ref delim) => count_names(&delim.tts), TokenTree::MetaVar(..) => 0, TokenTree::MetaVarDecl(..) => 1, // FIXME(c410-f3r) MetaVarExpr should be handled instead of being ignored // https://github.com/rust-lang/rust/issues/9390 TokenTree::MetaVarExpr(..) => 0, TokenTree::Sequence(_, ref seq) => seq.num_captures, TokenTree::Token(..) => 0, } }) } /// `len` `Vec`s (initially shared and empty) that will store matches of metavars. fn create_matches(len: usize) -> Box<[Lrc]> { if len == 0 { vec![] } else { let empty_matches = Lrc::new(SmallVec::new()); vec![empty_matches; len] } .into_boxed_slice() } /// `NamedMatch` is a pattern-match result for a single `token::MATCH_NONTERMINAL`: /// so it is associated with a single ident in a parse, and all /// `MatchedNonterminal`s in the `NamedMatch` have the same non-terminal type /// (expr, item, etc). Each leaf in a single `NamedMatch` corresponds to a /// single `token::MATCH_NONTERMINAL` in the `TokenTree` that produced it. /// /// The in-memory structure of a particular `NamedMatch` represents the match /// that occurred when a particular subset of a matcher was applied to a /// particular token tree. /// /// The width of each `MatchedSeq` in the `NamedMatch`, and the identity of /// the `MatchedNonterminal`s, will depend on the token tree it was applied /// to: each `MatchedSeq` corresponds to a single `TTSeq` in the originating /// token tree. The depth of the `NamedMatch` structure will therefore depend /// only on the nesting depth of `ast::TTSeq`s in the originating /// token tree it was derived from. /// /// In layman's terms: `NamedMatch` will form a tree representing nested matches of a particular /// meta variable. For example, if we are matching the following macro against the following /// invocation... /// /// ```rust /// macro_rules! foo { /// ($($($x:ident),+);+) => {} /// } /// /// foo!(a, b, c, d; a, b, c, d, e); /// ``` /// /// Then, the tree will have the following shape: /// /// ```rust /// MatchedSeq([ /// MatchedSeq([ /// MatchedNonterminal(a), /// MatchedNonterminal(b), /// MatchedNonterminal(c), /// MatchedNonterminal(d), /// ]), /// MatchedSeq([ /// MatchedNonterminal(a), /// MatchedNonterminal(b), /// MatchedNonterminal(c), /// MatchedNonterminal(d), /// MatchedNonterminal(e), /// ]) /// ]) /// ``` #[derive(Debug, Clone)] crate enum NamedMatch { MatchedSeq(Lrc), MatchedNonterminal(Lrc), } /// Takes a sequence of token trees `ms` representing a matcher which successfully matched input /// and an iterator of items that matched input and produces a `NamedParseResult`. fn nameize>( sess: &ParseSess, ms: &[TokenTree], mut res: I, ) -> NamedParseResult { // Recursively descend into each type of matcher (e.g., sequences, delimited, metavars) and make // sure that each metavar has _exactly one_ binding. If a metavar does not have exactly one // binding, then there is an error. If it does, then we insert the binding into the // `NamedParseResult`. fn n_rec>( sess: &ParseSess, m: &TokenTree, res: &mut I, ret_val: &mut FxHashMap, ) -> Result<(), (rustc_span::Span, String)> { match *m { TokenTree::Sequence(_, ref seq) => { for next_m in &seq.tts { n_rec(sess, next_m, res.by_ref(), ret_val)? } } TokenTree::Delimited(_, ref delim) => { for next_m in &delim.tts { n_rec(sess, next_m, res.by_ref(), ret_val)?; } } TokenTree::MetaVarDecl(span, _, None) => { if sess.missing_fragment_specifiers.borrow_mut().remove(&span).is_some() { return Err((span, "missing fragment specifier".to_string())); } } TokenTree::MetaVarDecl(sp, bind_name, _) => match ret_val .entry(MacroRulesNormalizedIdent::new(bind_name)) { Vacant(spot) => { spot.insert(res.next().unwrap()); } Occupied(..) => return Err((sp, format!("duplicated bind name: {}", bind_name))), }, TokenTree::Token(..) => (), TokenTree::MetaVar(..) | TokenTree::MetaVarExpr(..) => unreachable!(), } Ok(()) } let mut ret_val = FxHashMap::default(); for m in ms { match n_rec(sess, m, res.by_ref(), &mut ret_val) { Ok(_) => {} Err((sp, msg)) => return Error(sp, msg), } } Success(ret_val) } /// Performs a token equality check, ignoring syntax context (that is, an unhygienic comparison) fn token_name_eq(t1: &Token, t2: &Token) -> bool { if let (Some((ident1, is_raw1)), Some((ident2, is_raw2))) = (t1.ident(), t2.ident()) { ident1.name == ident2.name && is_raw1 == is_raw2 } else if let (Some(ident1), Some(ident2)) = (t1.lifetime(), t2.lifetime()) { ident1.name == ident2.name } else { t1.kind == t2.kind } } /// Process the matcher positions of `cur_items` until it is empty. In the process, this will /// produce more items in `next_items`, `eof_items`, and `bb_items`. /// /// For more info about the how this happens, see the module-level doc comments and the inline /// comments of this function. /// /// # Parameters /// /// - `cur_items`: the set of current items to be processed. This should be empty by the end of a /// successful execution of this function. /// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in /// the function `parse`. /// - `bb_items`: the set of items that are waiting for the black-box parser. /// - `token`: the current token of the parser. /// /// # Returns /// /// `Some(result)` if everything is finished, `None` otherwise. Note that matches are kept track of /// through the items generated. fn parse_tt_inner<'root, 'tt>( sess: &ParseSess, ms: &[TokenTree], cur_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>, next_items: &mut Vec>, bb_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>, token: &Token, ) -> Option { // Matcher positions that would be valid if the macro invocation was over now let mut eof_items = EofItems::None; // Pop items from `cur_items` until it is empty. while let Some(mut item) = cur_items.pop() { // When unzipped trees end, remove them. This corresponds to backtracking out of a // delimited submatcher into which we already descended. In backtracking out again, we need // to advance the "dot" past the delimiters in the outer matcher. while item.idx >= item.top_elts.len() { match item.stack.pop() { Some(MatcherTtFrame { elts, idx }) => { item.top_elts = elts; item.idx = idx + 1; } None => break, } } // Get the current position of the "dot" (`idx`) in `item` and the number of token trees in // the matcher (`len`). let idx = item.idx; let len = item.top_elts.len(); // If `idx >= len`, then we are at or past the end of the matcher of `item`. if idx >= len { // We are repeating iff there is a parent. If the matcher is inside of a repetition, // then we could be at the end of a sequence or at the beginning of the next // repetition. if let Some(repetition) = &item.repetition { debug_assert!(matches!(item.top_elts, Tt(TokenTree::Sequence(..)))); // At this point, regardless of whether there is a separator, we should add all // matches from the complete repetition of the sequence to the shared, top-level // `matches` list (actually, `up.matches`, which could itself not be the top-level, // but anyway...). Moreover, we add another item to `cur_items` in which the "dot" // is at the end of the `up` matcher. This ensures that the "dot" in the `up` // matcher is also advanced sufficiently. // // NOTE: removing the condition `idx == len` allows trailing separators. if idx == len { // Get the `up` matcher let mut new_pos = repetition.up.clone(); // Add matches from this repetition to the `matches` of `up` for idx in item.match_lo..item.match_hi { let sub = item.matches[idx].clone(); new_pos.push_match(idx, MatchedSeq(sub)); } // Move the "dot" past the repetition in `up` new_pos.match_cur = item.match_hi; new_pos.idx += 1; cur_items.push(new_pos); } // Check if we need a separator. if idx == len && repetition.sep.is_some() { // We have a separator, and it is the current token. We can advance past the // separator token. if repetition.sep.as_ref().map_or(false, |sep| token_name_eq(token, sep)) { item.idx += 1; next_items.push(item); } } else if repetition.seq_op != mbe::KleeneOp::ZeroOrOne { // We don't need a separator. Move the "dot" back to the beginning of the // matcher and try to match again UNLESS we are only allowed to have _one_ // repetition. item.match_cur = item.match_lo; item.idx = 0; cur_items.push(item); } } else { // If we are not in a repetition, then being at the end of a matcher means that we // have reached the potential end of the input. eof_items = match eof_items { EofItems::None => EofItems::One(item), EofItems::One(_) | EofItems::Multiple => EofItems::Multiple, } } } else { // We are in the middle of a matcher. Look at what token in the matcher we are trying // to match the current token (`token`) against. Depending on that, we may generate new // items. match item.top_elts.get_tt(idx) { // Need to descend into a sequence TokenTree::Sequence(sp, seq) => { // Examine the case where there are 0 matches of this sequence. We are // implicitly disallowing OneOrMore from having 0 matches here. Thus, that will // result in a "no rules expected token" error by virtue of this matcher not // working. if seq.kleene.op == mbe::KleeneOp::ZeroOrMore || seq.kleene.op == mbe::KleeneOp::ZeroOrOne { let mut new_item = item.clone(); new_item.match_cur += seq.num_captures; new_item.idx += 1; for idx in item.match_cur..item.match_cur + seq.num_captures { new_item.push_match(idx, MatchedSeq(Lrc::new(smallvec![]))); } cur_items.push(new_item); } let matches = create_matches(item.matches.len()); cur_items.push(MatcherPosHandle::Box(Box::new(MatcherPos { stack: smallvec![], idx: 0, matches, match_lo: item.match_cur, match_cur: item.match_cur, match_hi: item.match_cur + seq.num_captures, repetition: Some(MatcherPosRepetition { up: item, sep: seq.separator.clone(), seq_op: seq.kleene.op, }), top_elts: Tt(TokenTree::Sequence(sp, seq)), }))); } // We need to match a metavar (but the identifier is invalid)... this is an error TokenTree::MetaVarDecl(span, _, None) => { if sess.missing_fragment_specifiers.borrow_mut().remove(&span).is_some() { return Some(Error(span, "missing fragment specifier".to_string())); } } // We need to match a metavar with a valid ident... call out to the black-box // parser by adding an item to `bb_items`. TokenTree::MetaVarDecl(_, _, Some(kind)) => { // Built-in nonterminals never start with these tokens, so we can eliminate // them from consideration. // // We use the span of the metavariable declaration to determine any // edition-specific matching behavior for non-terminals. if Parser::nonterminal_may_begin_with(kind, token) { bb_items.push(item); } } // We need to descend into a delimited submatcher or a doc comment. To do this, we // push the current matcher onto a stack and push a new item containing the // submatcher onto `cur_items`. // // At the beginning of the loop, if we reach the end of the delimited submatcher, // we pop the stack to backtrack out of the descent. seq @ (TokenTree::Delimited(..) | TokenTree::Token(Token { kind: DocComment(..), .. })) => { let lower_elts = mem::replace(&mut item.top_elts, Tt(seq)); let idx = item.idx; item.stack.push(MatcherTtFrame { elts: lower_elts, idx }); item.idx = 0; cur_items.push(item); } // We just matched a normal token. We can just advance the parser. TokenTree::Token(t) if token_name_eq(&t, token) => { item.idx += 1; next_items.push(item); } // There was another token that was not `token`... This means we can't add any // rules. NOTE that this is not necessarily an error unless _all_ items in // `cur_items` end up doing this. There may still be some other matchers that do // end up working out. TokenTree::Token(..) => {} TokenTree::MetaVar(..) | TokenTree::MetaVarExpr(..) => unreachable!(), } } } // If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise, // either the parse is ambiguous (which should never happen) or there is a syntax error. if *token == token::Eof { Some(match eof_items { EofItems::One(mut eof_item) => { let matches = eof_item.matches.iter_mut().map(|dv| Lrc::make_mut(dv).pop().unwrap()); nameize(sess, ms, matches) } EofItems::Multiple => { Error(token.span, "ambiguity: multiple successful parses".to_string()) } EofItems::None => Failure( Token::new( token::Eof, if token.span.is_dummy() { token.span } else { token.span.shrink_to_hi() }, ), "missing tokens in macro arguments", ), }) } else { None } } /// Use the given sequence of token trees (`ms`) as a matcher. Match the token /// stream from the given `parser` against it and return the match. pub(super) fn parse_tt( parser: &mut Cow<'_, Parser<'_>>, ms: &[TokenTree], macro_name: Ident, ) -> NamedParseResult { // A queue of possible matcher positions. We initialize it with the matcher position in which // the "dot" is before the first token of the first token tree in `ms`. `parse_tt_inner` then // processes all of these possible matcher positions and produces possible next positions into // `next_items`. After some post-processing, the contents of `next_items` replenish `cur_items` // and we start over again. // // This MatcherPos instance is allocated on the stack. All others -- and // there are frequently *no* others! -- are allocated on the heap. let mut initial = MatcherPos::new(ms); let mut cur_items = smallvec![MatcherPosHandle::Ref(&mut initial)]; let mut next_items = Vec::new(); loop { assert!(next_items.is_empty()); // Matcher positions black-box parsed by parser.rs (`parser`) let mut bb_items = SmallVec::new(); // Process `cur_items` until either we have finished the input or we need to get some // parsing from the black-box parser done. The result is that `next_items` will contain a // bunch of possible next matcher positions in `next_items`. if let Some(result) = parse_tt_inner( parser.sess, ms, &mut cur_items, &mut next_items, &mut bb_items, &parser.token, ) { return result; } // `parse_tt_inner` handled all cur_items, so it's empty. assert!(cur_items.is_empty()); // We need to do some post processing after the `parse_tt_inner`. // // Error messages here could be improved with links to original rules. match (next_items.len(), bb_items.len()) { (0, 0) => { // There are no possible next positions AND we aren't waiting for the black-box // parser: syntax error. return Failure(parser.token.clone(), "no rules expected this token in macro call"); } (_, 0) => { // Dump all possible `next_items` into `cur_items` for the next iteration. Then // process the next token. cur_items.extend(next_items.drain(..)); parser.to_mut().bump(); } (0, 1) => { // We need to call the black-box parser to get some nonterminal. let mut item = bb_items.pop().unwrap(); if let TokenTree::MetaVarDecl(span, _, Some(kind)) = item.top_elts.get_tt(item.idx) { let match_cur = item.match_cur; // We use the span of the metavariable declaration to determine any // edition-specific matching behavior for non-terminals. let nt = match parser.to_mut().parse_nonterminal(kind) { Err(mut err) => { err.span_label( span, format!( "while parsing argument for this `{}` macro fragment", kind ), ) .emit(); return ErrorReported; } Ok(nt) => nt, }; item.push_match(match_cur, MatchedNonterminal(Lrc::new(nt))); item.idx += 1; item.match_cur += 1; } else { unreachable!() } cur_items.push(item); } (_, _) => { // We need to call the black-box parser to get some nonterminal, but something is // wrong. let nts = bb_items .iter() .map(|item| match item.top_elts.get_tt(item.idx) { TokenTree::MetaVarDecl(_, bind, Some(kind)) => { format!("{} ('{}')", kind, bind) } _ => panic!(), }) .collect::>() .join(" or "); return Error( parser.token.span, format!( "local ambiguity when calling macro `{macro_name}`: multiple parsing options: {}", match next_items.len() { 0 => format!("built-in NTs {}.", nts), 1 => format!("built-in NTs {} or 1 other option.", nts), n => format!("built-in NTs {} or {} other options.", nts, n), } ), ); } } assert!(!cur_items.is_empty()); } }