//! Checking that constant values used in types can be successfully evaluated. //! //! For concrete constants, this is fairly simple as we can just try and evaluate it. //! //! When dealing with polymorphic constants, for example `std::mem::size_of::() - 1`, //! this is not as easy. //! //! In this case we try to build an abstract representation of this constant using //! `mir_abstract_const` which can then be checked for structural equality with other //! generic constants mentioned in the `caller_bounds` of the current environment. use rustc_errors::ErrorReported; use rustc_hir::def::DefKind; use rustc_index::bit_set::BitSet; use rustc_index::vec::IndexVec; use rustc_infer::infer::InferCtxt; use rustc_middle::mir::abstract_const::{Node, NodeId, NotConstEvaluatable}; use rustc_middle::mir::interpret::ErrorHandled; use rustc_middle::mir::{self, Rvalue, StatementKind, TerminatorKind}; use rustc_middle::ty::subst::{Subst, SubstsRef}; use rustc_middle::ty::{self, TyCtxt, TypeFoldable}; use rustc_session::lint; use rustc_span::def_id::LocalDefId; use rustc_span::Span; use std::cmp; use std::iter; use std::ops::ControlFlow; /// Check if a given constant can be evaluated. pub fn is_const_evaluatable<'cx, 'tcx>( infcx: &InferCtxt<'cx, 'tcx>, uv: ty::Unevaluated<'tcx, ()>, param_env: ty::ParamEnv<'tcx>, span: Span, ) -> Result<(), NotConstEvaluatable> { debug!("is_const_evaluatable({:?})", uv); if infcx.tcx.features().const_evaluatable_checked { let tcx = infcx.tcx; match AbstractConst::new(tcx, uv)? { // We are looking at a generic abstract constant. Some(ct) => { for pred in param_env.caller_bounds() { match pred.kind().skip_binder() { ty::PredicateKind::ConstEvaluatable(uv) => { if let Some(b_ct) = AbstractConst::new(tcx, uv)? { // Try to unify with each subtree in the AbstractConst to allow for // `N + 1` being const evaluatable even if theres only a `ConstEvaluatable` // predicate for `(N + 1) * 2` let result = walk_abstract_const(tcx, b_ct, |b_ct| { match try_unify(tcx, ct, b_ct) { true => ControlFlow::BREAK, false => ControlFlow::CONTINUE, } }); if let ControlFlow::Break(()) = result { debug!("is_const_evaluatable: abstract_const ~~> ok"); return Ok(()); } } } _ => {} // don't care } } // We were unable to unify the abstract constant with // a constant found in the caller bounds, there are // now three possible cases here. #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)] enum FailureKind { /// The abstract const still references an inference /// variable, in this case we return `TooGeneric`. MentionsInfer, /// The abstract const references a generic parameter, /// this means that we emit an error here. MentionsParam, /// The substs are concrete enough that we can simply /// try and evaluate the given constant. Concrete, } let mut failure_kind = FailureKind::Concrete; walk_abstract_const::(tcx, ct, |node| match node.root() { Node::Leaf(leaf) => { let leaf = leaf.subst(tcx, ct.substs); if leaf.has_infer_types_or_consts() { failure_kind = FailureKind::MentionsInfer; } else if leaf.has_param_types_or_consts(tcx) { failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam); } ControlFlow::CONTINUE } Node::Cast(_, _, ty) => { let ty = ty.subst(tcx, ct.substs); if ty.has_infer_types_or_consts() { failure_kind = FailureKind::MentionsInfer; } else if ty.has_param_types_or_consts(tcx) { failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam); } ControlFlow::CONTINUE } Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => { ControlFlow::CONTINUE } }); match failure_kind { FailureKind::MentionsInfer => { return Err(NotConstEvaluatable::MentionsInfer); } FailureKind::MentionsParam => { return Err(NotConstEvaluatable::MentionsParam); } FailureKind::Concrete => { // Dealt with below by the same code which handles this // without the feature gate. } } } None => { // If we are dealing with a concrete constant, we can // reuse the old code path and try to evaluate // the constant. } } } let future_compat_lint = || { if let Some(local_def_id) = uv.def.did.as_local() { infcx.tcx.struct_span_lint_hir( lint::builtin::CONST_EVALUATABLE_UNCHECKED, infcx.tcx.hir().local_def_id_to_hir_id(local_def_id), span, |err| { err.build("cannot use constants which depend on generic parameters in types") .emit(); }, ); } }; // FIXME: We should only try to evaluate a given constant here if it is fully concrete // as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`. // // We previously did not check this, so we only emit a future compat warning if // const evaluation succeeds and the given constant is still polymorphic for now // and hopefully soon change this to an error. // // See #74595 for more details about this. let concrete = infcx.const_eval_resolve(param_env, uv.expand(), Some(span)); if concrete.is_ok() && uv.substs(infcx.tcx).has_param_types_or_consts(infcx.tcx) { match infcx.tcx.def_kind(uv.def.did) { DefKind::AnonConst => { let mir_body = infcx.tcx.mir_for_ctfe_opt_const_arg(uv.def); if mir_body.is_polymorphic { future_compat_lint(); } } _ => future_compat_lint(), } } debug!(?concrete, "is_const_evaluatable"); match concrete { Err(ErrorHandled::TooGeneric) => Err(match uv.has_infer_types_or_consts() { true => NotConstEvaluatable::MentionsInfer, false => NotConstEvaluatable::MentionsParam, }), Err(ErrorHandled::Linted) => { infcx.tcx.sess.delay_span_bug(span, "constant in type had error reported as lint"); Err(NotConstEvaluatable::Error(ErrorReported)) } Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)), Ok(_) => Ok(()), } } /// A tree representing an anonymous constant. /// /// This is only able to represent a subset of `MIR`, /// and should not leak any information about desugarings. #[derive(Debug, Clone, Copy)] pub struct AbstractConst<'tcx> { // FIXME: Consider adding something like `IndexSlice` // and use this here. pub inner: &'tcx [Node<'tcx>], pub substs: SubstsRef<'tcx>, } impl<'tcx> AbstractConst<'tcx> { pub fn new( tcx: TyCtxt<'tcx>, uv: ty::Unevaluated<'tcx, ()>, ) -> Result>, ErrorReported> { let inner = tcx.mir_abstract_const_opt_const_arg(uv.def)?; debug!("AbstractConst::new({:?}) = {:?}", uv, inner); Ok(inner.map(|inner| AbstractConst { inner, substs: uv.substs(tcx) })) } pub fn from_const( tcx: TyCtxt<'tcx>, ct: &ty::Const<'tcx>, ) -> Result>, ErrorReported> { match ct.val { ty::ConstKind::Unevaluated(uv) => AbstractConst::new(tcx, uv.shrink()), ty::ConstKind::Error(_) => Err(ErrorReported), _ => Ok(None), } } #[inline] pub fn subtree(self, node: NodeId) -> AbstractConst<'tcx> { AbstractConst { inner: &self.inner[..=node.index()], substs: self.substs } } #[inline] pub fn root(self) -> Node<'tcx> { self.inner.last().copied().unwrap() } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] struct WorkNode<'tcx> { node: Node<'tcx>, span: Span, used: bool, } struct AbstractConstBuilder<'a, 'tcx> { tcx: TyCtxt<'tcx>, body: &'a mir::Body<'tcx>, /// The current WIP node tree. /// /// We require all nodes to be used in the final abstract const, /// so we store this here. Note that we also consider nodes as used /// if they are mentioned in an assert, so some used nodes are never /// actually reachable by walking the [`AbstractConst`]. nodes: IndexVec>, locals: IndexVec, /// We only allow field accesses if they access /// the result of a checked operation. checked_op_locals: BitSet, } impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> { fn error(&mut self, span: Option, msg: &str) -> Result { self.tcx .sess .struct_span_err(self.body.span, "overly complex generic constant") .span_label(span.unwrap_or(self.body.span), msg) .help("consider moving this anonymous constant into a `const` function") .emit(); Err(ErrorReported) } fn new( tcx: TyCtxt<'tcx>, body: &'a mir::Body<'tcx>, ) -> Result>, ErrorReported> { let mut builder = AbstractConstBuilder { tcx, body, nodes: IndexVec::new(), locals: IndexVec::from_elem(NodeId::MAX, &body.local_decls), checked_op_locals: BitSet::new_empty(body.local_decls.len()), }; // We don't have to look at concrete constants, as we // can just evaluate them. if !body.is_polymorphic { return Ok(None); } // We only allow consts without control flow, so // we check for cycles here which simplifies the // rest of this implementation. if body.is_cfg_cyclic() { builder.error(None, "cyclic anonymous constants are forbidden")?; } Ok(Some(builder)) } fn add_node(&mut self, node: Node<'tcx>, span: Span) -> NodeId { // Mark used nodes. match node { Node::Leaf(_) => (), Node::Binop(_, lhs, rhs) => { self.nodes[lhs].used = true; self.nodes[rhs].used = true; } Node::UnaryOp(_, input) => { self.nodes[input].used = true; } Node::FunctionCall(func, nodes) => { self.nodes[func].used = true; nodes.iter().for_each(|&n| self.nodes[n].used = true); } Node::Cast(_, operand, _) => { self.nodes[operand].used = true; } } // Nodes start as unused. self.nodes.push(WorkNode { node, span, used: false }) } fn place_to_local( &mut self, span: Span, p: &mir::Place<'tcx>, ) -> Result { const ZERO_FIELD: mir::Field = mir::Field::from_usize(0); // Do not allow any projections. // // One exception are field accesses on the result of checked operations, // which are required to support things like `1 + 2`. if let Some(p) = p.as_local() { debug_assert!(!self.checked_op_locals.contains(p)); Ok(p) } else if let &[mir::ProjectionElem::Field(ZERO_FIELD, _)] = p.projection.as_ref() { // Only allow field accesses if the given local // contains the result of a checked operation. if self.checked_op_locals.contains(p.local) { Ok(p.local) } else { self.error(Some(span), "unsupported projection")?; } } else { self.error(Some(span), "unsupported projection")?; } } fn operand_to_node( &mut self, span: Span, op: &mir::Operand<'tcx>, ) -> Result { debug!("operand_to_node: op={:?}", op); match op { mir::Operand::Copy(p) | mir::Operand::Move(p) => { let local = self.place_to_local(span, p)?; Ok(self.locals[local]) } mir::Operand::Constant(ct) => match ct.literal { mir::ConstantKind::Ty(ct) => Ok(self.add_node(Node::Leaf(ct), span)), mir::ConstantKind::Val(..) => self.error(Some(span), "unsupported constant")?, }, } } /// We do not allow all binary operations in abstract consts, so filter disallowed ones. fn check_binop(op: mir::BinOp) -> bool { use mir::BinOp::*; match op { Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le | Ne | Ge | Gt => true, Offset => false, } } /// While we currently allow all unary operations, we still want to explicitly guard against /// future changes here. fn check_unop(op: mir::UnOp) -> bool { use mir::UnOp::*; match op { Not | Neg => true, } } fn build_statement(&mut self, stmt: &mir::Statement<'tcx>) -> Result<(), ErrorReported> { debug!("AbstractConstBuilder: stmt={:?}", stmt); let span = stmt.source_info.span; match stmt.kind { StatementKind::Assign(box (ref place, ref rvalue)) => { let local = self.place_to_local(span, place)?; match *rvalue { Rvalue::Use(ref operand) => { self.locals[local] = self.operand_to_node(span, operand)?; Ok(()) } Rvalue::BinaryOp(op, box (ref lhs, ref rhs)) if Self::check_binop(op) => { let lhs = self.operand_to_node(span, lhs)?; let rhs = self.operand_to_node(span, rhs)?; self.locals[local] = self.add_node(Node::Binop(op, lhs, rhs), span); if op.is_checkable() { bug!("unexpected unchecked checkable binary operation"); } else { Ok(()) } } Rvalue::CheckedBinaryOp(op, box (ref lhs, ref rhs)) if Self::check_binop(op) => { let lhs = self.operand_to_node(span, lhs)?; let rhs = self.operand_to_node(span, rhs)?; self.locals[local] = self.add_node(Node::Binop(op, lhs, rhs), span); self.checked_op_locals.insert(local); Ok(()) } Rvalue::UnaryOp(op, ref operand) if Self::check_unop(op) => { let operand = self.operand_to_node(span, operand)?; self.locals[local] = self.add_node(Node::UnaryOp(op, operand), span); Ok(()) } Rvalue::Cast(cast_kind, ref operand, ty) => { let operand = self.operand_to_node(span, operand)?; self.locals[local] = self.add_node(Node::Cast(cast_kind, operand, ty), span); Ok(()) } _ => self.error(Some(span), "unsupported rvalue")?, } } // These are not actually relevant for us here, so we can ignore them. StatementKind::AscribeUserType(..) | StatementKind::StorageLive(_) | StatementKind::StorageDead(_) => Ok(()), _ => self.error(Some(stmt.source_info.span), "unsupported statement")?, } } /// Possible return values: /// /// - `None`: unsupported terminator, stop building /// - `Some(None)`: supported terminator, finish building /// - `Some(Some(block))`: support terminator, build `block` next fn build_terminator( &mut self, terminator: &mir::Terminator<'tcx>, ) -> Result, ErrorReported> { debug!("AbstractConstBuilder: terminator={:?}", terminator); match terminator.kind { TerminatorKind::Goto { target } => Ok(Some(target)), TerminatorKind::Return => Ok(None), TerminatorKind::Call { ref func, ref args, destination: Some((ref place, target)), // We do not care about `cleanup` here. Any branch which // uses `cleanup` will fail const-eval and they therefore // do not matter when checking for const evaluatability. // // Do note that even if `panic::catch_unwind` is made const, // we still do not have to care about this, as we do not look // into functions. cleanup: _, // Do not allow overloaded operators for now, // we probably do want to allow this in the future. // // This is currently fairly irrelevant as it requires `const Trait`s. from_hir_call: true, fn_span, } => { let local = self.place_to_local(fn_span, place)?; let func = self.operand_to_node(fn_span, func)?; let args = self.tcx.arena.alloc_from_iter( args.iter() .map(|arg| self.operand_to_node(terminator.source_info.span, arg)) .collect::, _>>()?, ); self.locals[local] = self.add_node(Node::FunctionCall(func, args), fn_span); Ok(Some(target)) } TerminatorKind::Assert { ref cond, expected: false, target, .. } => { let p = match cond { mir::Operand::Copy(p) | mir::Operand::Move(p) => p, mir::Operand::Constant(_) => bug!("unexpected assert"), }; const ONE_FIELD: mir::Field = mir::Field::from_usize(1); debug!("proj: {:?}", p.projection); if let Some(p) = p.as_local() { debug_assert!(!self.checked_op_locals.contains(p)); // Mark locals directly used in asserts as used. // // This is needed because division does not use `CheckedBinop` but instead // adds an explicit assert for `divisor != 0`. self.nodes[self.locals[p]].used = true; return Ok(Some(target)); } else if let &[mir::ProjectionElem::Field(ONE_FIELD, _)] = p.projection.as_ref() { // Only allow asserts checking the result of a checked operation. if self.checked_op_locals.contains(p.local) { return Ok(Some(target)); } } self.error(Some(terminator.source_info.span), "unsupported assertion")?; } _ => self.error(Some(terminator.source_info.span), "unsupported terminator")?, } } /// Builds the abstract const by walking the mir from start to finish /// and bailing out when encountering an unsupported operation. fn build(mut self) -> Result<&'tcx [Node<'tcx>], ErrorReported> { let mut block = &self.body.basic_blocks()[mir::START_BLOCK]; // We checked for a cyclic cfg above, so this should terminate. loop { debug!("AbstractConstBuilder: block={:?}", block); for stmt in block.statements.iter() { self.build_statement(stmt)?; } if let Some(next) = self.build_terminator(block.terminator())? { block = &self.body.basic_blocks()[next]; } else { break; } } assert_eq!(self.locals[mir::RETURN_PLACE], self.nodes.last().unwrap()); for n in self.nodes.iter() { if let Node::Leaf(ty::Const { val: ty::ConstKind::Unevaluated(ct), ty: _ }) = n.node { // `AbstractConst`s should not contain any promoteds as they require references which // are not allowed. assert_eq!(ct.promoted, None); } } self.nodes[self.locals[mir::RETURN_PLACE]].used = true; if let Some(&unused) = self.nodes.iter().find(|n| !n.used) { self.error(Some(unused.span), "dead code")?; } Ok(self.tcx.arena.alloc_from_iter(self.nodes.into_iter().map(|n| n.node))) } } /// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead. pub(super) fn mir_abstract_const<'tcx>( tcx: TyCtxt<'tcx>, def: ty::WithOptConstParam, ) -> Result]>, ErrorReported> { if tcx.features().const_evaluatable_checked { match tcx.def_kind(def.did) { // FIXME(const_evaluatable_checked): We currently only do this for anonymous constants, // meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether // we want to look into them or treat them as opaque projections. // // Right now we do neither of that and simply always fail to unify them. DefKind::AnonConst => (), _ => return Ok(None), } let body = tcx.mir_const(def).borrow(); AbstractConstBuilder::new(tcx, &body)?.map(AbstractConstBuilder::build).transpose() } else { Ok(None) } } pub(super) fn try_unify_abstract_consts<'tcx>( tcx: TyCtxt<'tcx>, (a, b): (ty::Unevaluated<'tcx, ()>, ty::Unevaluated<'tcx, ()>), ) -> bool { (|| { if let Some(a) = AbstractConst::new(tcx, a)? { if let Some(b) = AbstractConst::new(tcx, b)? { return Ok(try_unify(tcx, a, b)); } } Ok(false) })() .unwrap_or_else(|ErrorReported| true) // FIXME(const_evaluatable_checked): We should instead have this // method return the resulting `ty::Const` and return `ConstKind::Error` // on `ErrorReported`. } pub fn walk_abstract_const<'tcx, R, F>( tcx: TyCtxt<'tcx>, ct: AbstractConst<'tcx>, mut f: F, ) -> ControlFlow where F: FnMut(AbstractConst<'tcx>) -> ControlFlow, { fn recurse<'tcx, R>( tcx: TyCtxt<'tcx>, ct: AbstractConst<'tcx>, f: &mut dyn FnMut(AbstractConst<'tcx>) -> ControlFlow, ) -> ControlFlow { f(ct)?; let root = ct.root(); match root { Node::Leaf(_) => ControlFlow::CONTINUE, Node::Binop(_, l, r) => { recurse(tcx, ct.subtree(l), f)?; recurse(tcx, ct.subtree(r), f) } Node::UnaryOp(_, v) => recurse(tcx, ct.subtree(v), f), Node::FunctionCall(func, args) => { recurse(tcx, ct.subtree(func), f)?; args.iter().try_for_each(|&arg| recurse(tcx, ct.subtree(arg), f)) } Node::Cast(_, operand, _) => recurse(tcx, ct.subtree(operand), f), } } recurse(tcx, ct, &mut f) } /// Tries to unify two abstract constants using structural equality. pub(super) fn try_unify<'tcx>( tcx: TyCtxt<'tcx>, mut a: AbstractConst<'tcx>, mut b: AbstractConst<'tcx>, ) -> bool { // We substitute generics repeatedly to allow AbstractConsts to unify where a // ConstKind::Unevalated could be turned into an AbstractConst that would unify e.g. // Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])] while let Node::Leaf(a_ct) = a.root() { let a_ct = a_ct.subst(tcx, a.substs); match AbstractConst::from_const(tcx, a_ct) { Ok(Some(a_act)) => a = a_act, Ok(None) => break, Err(_) => return true, } } while let Node::Leaf(b_ct) = b.root() { let b_ct = b_ct.subst(tcx, b.substs); match AbstractConst::from_const(tcx, b_ct) { Ok(Some(b_act)) => b = b_act, Ok(None) => break, Err(_) => return true, } } match (a.root(), b.root()) { (Node::Leaf(a_ct), Node::Leaf(b_ct)) => { let a_ct = a_ct.subst(tcx, a.substs); let b_ct = b_ct.subst(tcx, b.substs); if a_ct.ty != b_ct.ty { return false; } match (a_ct.val, b_ct.val) { // We can just unify errors with everything to reduce the amount of // emitted errors here. (ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true, (ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => { a_param == b_param } (ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val, // If we have `fn a() -> [u8; N + 1]` and `fn b() -> [u8; 1 + M]` // we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This // means that we only allow inference variables if they are equal. (ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val, // We expand generic anonymous constants at the start of this function, so this // branch should only be taking when dealing with associated constants, at // which point directly comparing them seems like the desired behavior. // // FIXME(const_evaluatable_checked): This isn't actually the case. // We also take this branch for concrete anonymous constants and // expand generic anonymous constants with concrete substs. (ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => { a_uv == b_uv } // FIXME(const_evaluatable_checked): We may want to either actually try // to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like // this, for now we just return false here. _ => false, } } (Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => { try_unify(tcx, a.subtree(al), b.subtree(bl)) && try_unify(tcx, a.subtree(ar), b.subtree(br)) } (Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => { try_unify(tcx, a.subtree(av), b.subtree(bv)) } (Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args)) if a_args.len() == b_args.len() => { try_unify(tcx, a.subtree(a_f), b.subtree(b_f)) && iter::zip(a_args, b_args) .all(|(&an, &bn)| try_unify(tcx, a.subtree(an), b.subtree(bn))) } (Node::Cast(a_cast_kind, a_operand, a_ty), Node::Cast(b_cast_kind, b_operand, b_ty)) if (a_ty == b_ty) && (a_cast_kind == b_cast_kind) => { try_unify(tcx, a.subtree(a_operand), b.subtree(b_operand)) } _ => false, } }