// The Rust abstract syntax tree. import codemap::{span, filename}; import std::serialization::{serializer, deserializer, serialize_option, deserialize_option, serialize_uint, deserialize_uint, serialize_int, deserialize_int, serialize_i64, deserialize_i64, serialize_u64, deserialize_u64, serialize_str, deserialize_str, serialize_bool, deserialize_bool}; import parse::token; /* Note #1972 -- spans are serialized but not deserialized */ fn serialize_span(_s: S, _v: span) { } fn deserialize_span(_d: D) -> span { ast_util::dummy_sp() } #[auto_serialize] type spanned = {node: T, span: span}; /* can't import macros yet, so this is copied from token.rs. See its comment * there. */ macro_rules! interner_key ( () => (unsafe::transmute::<(uint, uint), &fn(+@@token::ident_interner)>( (-3 as uint, 0u))) ) fn serialize_ident(s: S, i: ident) { let intr = match unsafe{task::local_data_get(interner_key!())}{ none => fail ~"serialization: TLS interner not set up", some(intr) => intr }; s.emit_str(*(*intr).get(i)); } fn deserialize_ident(d: D) -> ident { let intr = match unsafe{task::local_data_get(interner_key!())}{ none => fail ~"deserialization: TLS interner not set up", some(intr) => intr }; (*intr).intern(@d.read_str()) } type ident = token::str_num; // Functions may or may not have names. #[auto_serialize] type fn_ident = option; #[auto_serialize] type path = {span: span, global: bool, idents: ~[ident], rp: option<@region>, types: ~[@ty]}; #[auto_serialize] type crate_num = int; #[auto_serialize] type node_id = int; #[auto_serialize] type def_id = {crate: crate_num, node: node_id}; const local_crate: crate_num = 0; const crate_node_id: node_id = 0; #[auto_serialize] enum ty_param_bound { bound_copy, bound_send, bound_const, bound_owned, bound_trait(@ty), } #[auto_serialize] type ty_param = {ident: ident, id: node_id, bounds: @~[ty_param_bound]}; #[auto_serialize] enum def { def_fn(def_id, purity), def_static_method(def_id, purity), def_self(node_id), def_mod(def_id), def_foreign_mod(def_id), def_const(def_id), def_arg(node_id, mode), def_local(node_id, bool /* is_mutbl */), def_variant(def_id /* enum */, def_id /* variant */), def_ty(def_id), def_prim_ty(prim_ty), def_ty_param(def_id, uint), def_binding(node_id, binding_mode), def_use(def_id), def_upvar(node_id /* id of closed over var */, @def /* closed over def */, node_id /* expr node that creates the closure */, node_id /* id for the block/body of the closure expr */), def_class(def_id, bool /* has constructor */), def_typaram_binder(node_id), /* class, impl or trait that has ty params */ def_region(node_id), def_label(node_id) } // The set of meta_items that define the compilation environment of the crate, // used to drive conditional compilation type crate_cfg = ~[@meta_item]; type crate = spanned; type crate_ = {directives: ~[@crate_directive], module: _mod, attrs: ~[attribute], config: crate_cfg}; enum crate_directive_ { cdir_src_mod(ident, ~[attribute]), cdir_dir_mod(ident, ~[@crate_directive], ~[attribute]), // NB: cdir_view_item is *not* processed by the rest of the compiler, the // attached view_items are sunk into the crate's module during parsing, // and processed (resolved, imported, etc.) there. This enum-variant // exists only to preserve the view items in order in case we decide to // pretty-print crates in the future. cdir_view_item(@view_item), cdir_syntax(@path), } type crate_directive = spanned; #[auto_serialize] type meta_item = spanned; #[auto_serialize] enum meta_item_ { meta_word(~str), meta_list(~str, ~[@meta_item]), meta_name_value(~str, lit), } #[auto_serialize] type blk = spanned; #[auto_serialize] type blk_ = {view_items: ~[@view_item], stmts: ~[@stmt], expr: option<@expr>, id: node_id, rules: blk_check_mode}; #[auto_serialize] type pat = {id: node_id, node: pat_, span: span}; #[auto_serialize] type field_pat = {ident: ident, pat: @pat}; #[auto_serialize] enum binding_mode { bind_by_value, bind_by_move, bind_by_ref(ast::mutability), bind_by_implicit_ref } #[auto_serialize] enum pat_ { pat_wild, // A pat_ident may either be a new bound variable, // or a nullary enum (in which case the second field // is none). // In the nullary enum case, the parser can't determine // which it is. The resolver determines this, and // records this pattern's node_id in an auxiliary // set (of "pat_idents that refer to nullary enums") pat_ident(binding_mode, @path, option<@pat>), pat_enum(@path, option<~[@pat]>), // "none" means a * pattern where // we don't bind the fields to names pat_rec(~[field_pat], bool), pat_struct(@path, ~[field_pat], bool), pat_tup(~[@pat]), pat_box(@pat), pat_uniq(@pat), pat_lit(@expr), pat_range(@expr, @expr), } #[auto_serialize] enum mutability { m_mutbl, m_imm, m_const, } #[auto_serialize] enum proto { proto_bare, // foreign fn proto_uniq, // fn~ proto_box, // fn@ proto_block, // fn& } #[auto_serialize] enum vstore { // FIXME (#2112): Change uint to @expr (actually only constant exprs) vstore_fixed(option), // [1,2,3,4]/_ or 4 vstore_uniq, // ~[1,2,3,4] vstore_box, // @[1,2,3,4] vstore_slice(@region) // &[1,2,3,4](foo)? } pure fn is_blockish(p: ast::proto) -> bool { match p { proto_block => true, proto_bare | proto_uniq | proto_box => false } } #[auto_serialize] enum binop { add, subtract, mul, div, rem, and, or, bitxor, bitand, bitor, shl, shr, eq, lt, le, ne, ge, gt, } #[auto_serialize] enum unop { box(mutability), uniq(mutability), deref, not, neg } // Generally, after typeck you can get the inferred value // using ty::resolved_T(...). #[auto_serialize] enum inferable { expl(T), infer(node_id) } // "resolved" mode: the real modes. #[auto_serialize] enum rmode { by_ref, by_val, by_mutbl_ref, by_move, by_copy } // inferable mode. #[auto_serialize] type mode = inferable; #[auto_serialize] type stmt = spanned; #[auto_serialize] enum stmt_ { stmt_decl(@decl, node_id), // expr without trailing semi-colon (must have unit type): stmt_expr(@expr, node_id), // expr with trailing semi-colon (may have any type): stmt_semi(@expr, node_id), } #[auto_serialize] enum init_op { init_assign, init_move, } #[auto_serialize] type initializer = {op: init_op, expr: @expr}; // FIXME (pending discussion of #1697, #2178...): local should really be // a refinement on pat. #[auto_serialize] type local_ = {is_mutbl: bool, ty: @ty, pat: @pat, init: option, id: node_id}; #[auto_serialize] type local = spanned; #[auto_serialize] type decl = spanned; #[auto_serialize] enum decl_ { decl_local(~[@local]), decl_item(@item), } #[auto_serialize] type arm = {pats: ~[@pat], guard: option<@expr>, body: blk}; #[auto_serialize] type field_ = {mutbl: mutability, ident: ident, expr: @expr}; #[auto_serialize] type field = spanned; #[auto_serialize] enum blk_check_mode { default_blk, unchecked_blk, unsafe_blk, } #[auto_serialize] type expr = {id: node_id, callee_id: node_id, node: expr_, span: span}; // Extra node ID is only used for index, assign_op, unary, binary #[auto_serialize] enum log_level { error, debug, other } // 0 = error, 1 = debug, 2 = other #[auto_serialize] enum alt_mode { alt_check, alt_exhaustive, } #[auto_serialize] enum expr_ { expr_vstore(@expr, vstore), expr_vec(~[@expr], mutability), expr_rec(~[field], option<@expr>), expr_call(@expr, ~[@expr], bool), // True iff last argument is a block expr_tup(~[@expr]), expr_binary(binop, @expr, @expr), expr_unary(unop, @expr), expr_lit(@lit), expr_cast(@expr, @ty), expr_if(@expr, blk, option<@expr>), expr_while(@expr, blk), /* Conditionless loop (can be exited with break, cont, ret, or fail) Same semantics as while(true) { body }, but typestate knows that the (implicit) condition is always true. */ expr_loop(blk, option), expr_match(@expr, ~[arm]), expr_fn(proto, fn_decl, blk, capture_clause), expr_fn_block(fn_decl, blk, capture_clause), // Inner expr is always an expr_fn_block. We need the wrapping node to // easily type this (a function returning nil on the inside but bool on // the outside). expr_loop_body(@expr), // Like expr_loop_body but for 'do' blocks expr_do_body(@expr), expr_block(blk), expr_copy(@expr), expr_move(@expr, @expr), expr_unary_move(@expr), expr_assign(@expr, @expr), expr_swap(@expr, @expr), expr_assign_op(binop, @expr, @expr), expr_field(@expr, ident, ~[@ty]), expr_index(@expr, @expr), expr_path(@path), expr_addr_of(mutability, @expr), expr_fail(option<@expr>), expr_break(option), expr_again(option), expr_ret(option<@expr>), expr_log(log_level, @expr, @expr), /* just an assert */ expr_assert(@expr), expr_mac(mac), // A struct literal expression. expr_struct(@path, ~[field], option<@expr>), // A vector literal constructed from one repeated element. expr_repeat(@expr /* element */, @expr /* count */, mutability) } #[auto_serialize] type capture_item = @{ id: int, is_move: bool, name: ident, // Currently, can only capture a local var. span: span }; #[auto_serialize] type capture_clause = @~[capture_item]; // // When the main rust parser encounters a syntax-extension invocation, it // parses the arguments to the invocation as a token-tree. This is a very // loose structure, such that all sorts of different AST-fragments can // be passed to syntax extensions using a uniform type. // // If the syntax extension is an MBE macro, it will attempt to match its // LHS "matchers" against the provided token tree, and if it finds a // match, will transcribe the RHS token tree, splicing in any captured // macro_parser::matched_nonterminals into the tt_nonterminals it finds. // // The RHS of an MBE macro is the only place a tt_nonterminal or tt_seq // makes any real sense. You could write them elsewhere but nothing // else knows what to do with them, so you'll probably get a syntax // error. // #[auto_serialize] #[doc="For macro invocations; parsing is delegated to the macro"] enum token_tree { tt_tok(span, token::token), tt_delim(~[token_tree]), // These only make sense for right-hand-sides of MBE macros tt_seq(span, ~[token_tree], option, bool), tt_nonterminal(span, ident) } // // Matchers are nodes defined-by and recognized-by the main rust parser and // language, but they're only ever found inside syntax-extension invocations; // indeed, the only thing that ever _activates_ the rules in the rust parser // for parsing a matcher is a matcher looking for the 'matchers' nonterminal // itself. Matchers represent a small sub-language for pattern-matching // token-trees, and are thus primarily used by the macro-defining extension // itself. // // match_tok // --------- // // A matcher that matches a single token, denoted by the token itself. So // long as there's no $ involved. // // // match_seq // --------- // // A matcher that matches a sequence of sub-matchers, denoted various // possible ways: // // $(M)* zero or more Ms // $(M)+ one or more Ms // $(M),+ one or more comma-separated Ms // $(A B C);* zero or more semi-separated 'A B C' seqs // // // match_nonterminal // ----------------- // // A matcher that matches one of a few interesting named rust // nonterminals, such as types, expressions, items, or raw token-trees. A // black-box matcher on expr, for example, binds an expr to a given ident, // and that ident can re-occur as an interpolation in the RHS of a // macro-by-example rule. For example: // // $foo:expr => 1 + $foo // interpolate an expr // $foo:tt => $foo // interpolate a token-tree // $foo:tt => bar! $foo // only other valid interpolation // // is in arg position for another // // macro // // As a final, horrifying aside, note that macro-by-example's input is // also matched by one of these matchers. Holy self-referential! It is matched // by an match_seq, specifically this one: // // $( $lhs:matchers => $rhs:tt );+ // // If you understand that, you have closed to loop and understand the whole // macro system. Congratulations. // #[auto_serialize] type matcher = spanned; #[auto_serialize] enum matcher_ { // match one token match_tok(token::token), // match repetitions of a sequence: body, separator, zero ok?, // lo, hi position-in-match-array used: match_seq(~[matcher], option, bool, uint, uint), // parse a Rust NT: name to bind, name of NT, position in match array: match_nonterminal(ident, ident, uint) } #[auto_serialize] type mac = spanned; #[auto_serialize] type mac_arg = option<@expr>; #[auto_serialize] type mac_body_ = {span: span}; #[auto_serialize] type mac_body = option; #[auto_serialize] enum mac_ { mac_invoc(@path, mac_arg, mac_body), // old macro-invocation mac_invoc_tt(@path,~[token_tree]), // new macro-invocation mac_ellipsis, // old pattern-match (obsolete) // the span is used by the quoter/anti-quoter ... mac_aq(span /* span of quote */, @expr), // anti-quote mac_var(uint) } #[auto_serialize] type lit = spanned; #[auto_serialize] enum lit_ { lit_str(@~str), lit_int(i64, int_ty), lit_uint(u64, uint_ty), lit_int_unsuffixed(i64), lit_float(@~str, float_ty), lit_nil, lit_bool(bool), } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. #[auto_serialize] type mt = {ty: @ty, mutbl: mutability}; #[auto_serialize] type ty_field_ = {ident: ident, mt: mt}; #[auto_serialize] type ty_field = spanned; #[auto_serialize] type ty_method = {ident: ident, attrs: ~[attribute], purity: purity, decl: fn_decl, tps: ~[ty_param], self_ty: self_ty, id: node_id, span: span}; #[auto_serialize] // A trait method is either required (meaning it doesn't have an // implementation, just a signature) or provided (meaning it has a default // implementation). enum trait_method { required(ty_method), provided(@method), } #[auto_serialize] enum int_ty { ty_i, ty_char, ty_i8, ty_i16, ty_i32, ty_i64, } #[auto_serialize] enum uint_ty { ty_u, ty_u8, ty_u16, ty_u32, ty_u64, } #[auto_serialize] enum float_ty { ty_f, ty_f32, ty_f64, } #[auto_serialize] type ty = {id: node_id, node: ty_, span: span}; // Not represented directly in the AST, referred to by name through a ty_path. #[auto_serialize] enum prim_ty { ty_int(int_ty), ty_uint(uint_ty), ty_float(float_ty), ty_str, ty_bool, } #[auto_serialize] type region = {id: node_id, node: region_}; #[auto_serialize] enum region_ { re_anon, re_named(ident) } #[auto_serialize] enum ty_ { ty_nil, ty_bot, /* bottom type */ ty_box(mt), ty_uniq(mt), ty_vec(mt), ty_ptr(mt), ty_rptr(@region, mt), ty_rec(~[ty_field]), ty_fn(proto, purity, @~[ty_param_bound], fn_decl), ty_tup(~[@ty]), ty_path(@path, node_id), ty_fixed_length(@ty, option), ty_mac(mac), // ty_infer means the type should be inferred instead of it having been // specified. This should only appear at the "top level" of a type and not // nested in one. ty_infer, } #[auto_serialize] type arg = {mode: mode, ty: @ty, ident: ident, id: node_id}; #[auto_serialize] type fn_decl = {inputs: ~[arg], output: @ty, cf: ret_style}; #[auto_serialize] enum purity { pure_fn, // declared with "pure fn" unsafe_fn, // declared with "unsafe fn" impure_fn, // declared with "fn" extern_fn, // declared with "extern fn" } #[auto_serialize] enum ret_style { noreturn, // functions with return type _|_ that always // raise an error or exit (i.e. never return to the caller) return_val, // everything else } #[auto_serialize] enum self_ty_ { sty_static, // no self: static method sty_by_ref, // old by-reference self: `` sty_value, // by-value self: `self` sty_region(mutability), // by-region self: `&self` sty_box(mutability), // by-managed-pointer self: `@self` sty_uniq(mutability) // by-unique-pointer self: `~self` } #[auto_serialize] type self_ty = spanned; #[auto_serialize] type method = {ident: ident, attrs: ~[attribute], tps: ~[ty_param], self_ty: self_ty, purity: purity, decl: fn_decl, body: blk, id: node_id, span: span, self_id: node_id, vis: visibility}; // always public, unless it's a // class method #[auto_serialize] type _mod = {view_items: ~[@view_item], items: ~[@item]}; #[auto_serialize] enum foreign_abi { foreign_abi_rust_intrinsic, foreign_abi_cdecl, foreign_abi_stdcall, } #[auto_serialize] type foreign_mod = {view_items: ~[@view_item], items: ~[@foreign_item]}; #[auto_serialize] type variant_arg = {ty: @ty, id: node_id}; #[auto_serialize] enum variant_kind { tuple_variant_kind(~[variant_arg]), struct_variant_kind(@struct_def), enum_variant_kind(enum_def) } #[auto_serialize] enum enum_def = { variants: ~[variant], common: option<@struct_def> }; #[auto_serialize] type variant_ = {name: ident, attrs: ~[attribute], kind: variant_kind, id: node_id, disr_expr: option<@expr>, vis: visibility}; #[auto_serialize] type variant = spanned; #[auto_serialize] type path_list_ident_ = {name: ident, id: node_id}; #[auto_serialize] type path_list_ident = spanned; #[auto_serialize] type view_path = spanned; #[auto_serialize] enum view_path_ { // quux = foo::bar::baz // // or just // // foo::bar::baz (with 'baz =' implicitly on the left) view_path_simple(ident, @path, node_id), // foo::bar::* view_path_glob(@path, node_id), // foo::bar::{a,b,c} view_path_list(@path, ~[path_list_ident], node_id) } #[auto_serialize] type view_item = {node: view_item_, attrs: ~[attribute], vis: visibility, span: span}; #[auto_serialize] enum view_item_ { view_item_use(ident, ~[@meta_item], node_id), view_item_import(~[@view_path]), view_item_export(~[@view_path]) } // Meta-data associated with an item #[auto_serialize] type attribute = spanned; // Distinguishes between attributes that decorate items and attributes that // are contained as statements within items. These two cases need to be // distinguished for pretty-printing. #[auto_serialize] enum attr_style { attr_outer, attr_inner, } // doc-comments are promoted to attributes that have is_sugared_doc = true #[auto_serialize] type attribute_ = {style: attr_style, value: meta_item, is_sugared_doc: bool}; /* trait_refs appear in both impls and in classes that implement traits. resolve maps each trait_ref's ref_id to its defining trait; that's all that the ref_id is for. The impl_id maps to the "self type" of this impl. If this impl is an item_impl, the impl_id is redundant (it could be the same as the impl's node id). If this impl is actually an impl_class, then conceptually, the impl_id stands in for the pair of (this class, this trait) */ #[auto_serialize] type trait_ref = {path: @path, ref_id: node_id, impl_id: node_id}; #[auto_serialize] enum visibility { public, private, inherited } #[auto_serialize] type struct_field_ = { kind: struct_field_kind, id: node_id, ty: @ty }; #[auto_serialize] type struct_field = spanned; #[auto_serialize] enum struct_field_kind { named_field(ident, class_mutability, visibility), unnamed_field // element of a tuple-like struct } #[auto_serialize] type struct_def = { traits: ~[@trait_ref], /* traits this struct implements */ fields: ~[@struct_field], /* fields */ methods: ~[@method], /* methods */ /* (not including ctor or dtor) */ /* ctor is optional, and will soon go away */ ctor: option, /* dtor is optional */ dtor: option }; #[auto_serialize] type item = {ident: ident, attrs: ~[attribute], id: node_id, node: item_, vis: visibility, span: span}; #[auto_serialize] enum item_ { item_const(@ty, @expr), item_fn(fn_decl, purity, ~[ty_param], blk), item_mod(_mod), item_foreign_mod(foreign_mod), item_ty(@ty, ~[ty_param]), item_enum(enum_def, ~[ty_param]), item_class(@struct_def, ~[ty_param]), item_trait(~[ty_param], ~[@trait_ref], ~[trait_method]), item_impl(~[ty_param], ~[@trait_ref], /* traits this impl implements */ @ty, /* self */ ~[@method]), item_mac(mac), } #[auto_serialize] enum class_mutability { class_mutable, class_immutable } #[auto_serialize] type class_ctor = spanned; #[auto_serialize] type class_ctor_ = {id: node_id, attrs: ~[attribute], self_id: node_id, dec: fn_decl, body: blk}; #[auto_serialize] type class_dtor = spanned; #[auto_serialize] type class_dtor_ = {id: node_id, attrs: ~[attribute], self_id: node_id, body: blk}; #[auto_serialize] type foreign_item = {ident: ident, attrs: ~[attribute], node: foreign_item_, id: node_id, span: span}; #[auto_serialize] enum foreign_item_ { foreign_item_fn(fn_decl, purity, ~[ty_param]), } // The data we save and restore about an inlined item or method. This is not // part of the AST that we parse from a file, but it becomes part of the tree // that we trans. #[auto_serialize] enum inlined_item { ii_item(@item), ii_method(def_id /* impl id */, @method), ii_foreign(@foreign_item), ii_ctor(class_ctor, ident, ~[ty_param], def_id /* parent id */), ii_dtor(class_dtor, ident, ~[ty_param], def_id /* parent id */) } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //