//! Code shared by trait and projection goals for candidate assembly. use super::search_graph::OverflowHandler; use super::{EvalCtxt, SolverMode}; use crate::solve::CanonicalResponseExt; use crate::traits::coherence; use rustc_data_structures::fx::FxIndexSet; use rustc_hir::def_id::DefId; use rustc_infer::traits::query::NoSolution; use rustc_infer::traits::util::elaborate; use rustc_middle::traits::solve::{CanonicalResponse, Certainty, Goal, MaybeCause, QueryResult}; use rustc_middle::ty::fast_reject::TreatProjections; use rustc_middle::ty::TypeFoldable; use rustc_middle::ty::{self, Ty, TyCtxt}; use std::fmt::Debug; pub(super) mod structural_traits; /// A candidate is a possible way to prove a goal. /// /// It consists of both the `source`, which describes how that goal would be proven, /// and the `result` when using the given `source`. #[derive(Debug, Clone)] pub(super) struct Candidate<'tcx> { pub(super) source: CandidateSource, pub(super) result: CanonicalResponse<'tcx>, } /// Possible ways the given goal can be proven. #[derive(Debug, Clone, Copy)] pub(super) enum CandidateSource { /// A user written impl. /// /// ## Examples /// /// ```rust /// fn main() { /// let x: Vec = Vec::new(); /// // This uses the impl from the standard library to prove `Vec: Clone`. /// let y = x.clone(); /// } /// ``` Impl(DefId), /// A builtin impl generated by the compiler. When adding a new special /// trait, try to use actual impls whenever possible. Builtin impls should /// only be used in cases where the impl cannot be manually be written. /// /// Notable examples are auto traits, `Sized`, and `DiscriminantKind`. /// For a list of all traits with builtin impls, check out the /// [`EvalCtxt::assemble_builtin_impl_candidates`] method. Not BuiltinImpl, /// An assumption from the environment. /// /// More precicely we've used the `n-th` assumption in the `param_env`. /// /// ## Examples /// /// ```rust /// fn is_clone(x: T) -> (T, T) { /// // This uses the assumption `T: Clone` from the `where`-bounds /// // to prove `T: Clone`. /// (x.clone(), x) /// } /// ``` ParamEnv(usize), /// If the self type is an alias type, e.g. an opaque type or a projection, /// we know the bounds on that alias to hold even without knowing its concrete /// underlying type. /// /// More precisely this candidate is using the `n-th` bound in the `item_bounds` of /// the self type. /// /// ## Examples /// /// ```rust /// trait Trait { /// type Assoc: Clone; /// } /// /// fn foo(x: ::Assoc) { /// // We prove `::Assoc` by looking at the bounds on `Assoc` in /// // in the trait definition. /// let _y = x.clone(); /// } /// ``` AliasBound, } /// Methods used to assemble candidates for either trait or projection goals. pub(super) trait GoalKind<'tcx>: TypeFoldable> + Copy + Eq { fn self_ty(self) -> Ty<'tcx>; fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx>; fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self; fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId; // Consider a clause, which consists of a "assumption" and some "requirements", // to satisfy a goal. If the requirements hold, then attempt to satisfy our // goal by equating it with the assumption. fn consider_implied_clause( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, assumption: ty::Predicate<'tcx>, requirements: impl IntoIterator>>, ) -> QueryResult<'tcx>; // Consider a clause specifically for a `dyn Trait` self type. This requires // additionally checking all of the supertraits and object bounds to hold, // since they're not implied by the well-formedness of the object type. fn consider_object_bound_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, assumption: ty::Predicate<'tcx>, ) -> QueryResult<'tcx>; fn consider_impl_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, impl_def_id: DefId, ) -> QueryResult<'tcx>; // A type implements an `auto trait` if its components do as well. These components // are given by built-in rules from [`instantiate_constituent_tys_for_auto_trait`]. fn consider_auto_trait_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // A trait alias holds if the RHS traits and `where` clauses hold. fn consider_trait_alias_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // A type is `Copy` or `Clone` if its components are `Sized`. These components // are given by built-in rules from [`instantiate_constituent_tys_for_sized_trait`]. fn consider_builtin_sized_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // A type is `Copy` or `Clone` if its components are `Copy` or `Clone`. These // components are given by built-in rules from [`instantiate_constituent_tys_for_copy_clone_trait`]. fn consider_builtin_copy_clone_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // A type is `PointerLike` if we can compute its layout, and that layout // matches the layout of `usize`. fn consider_builtin_pointer_like_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // A type is a `FnPtr` if it is of `FnPtr` type. fn consider_builtin_fn_ptr_trait_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // A callable type (a closure, fn def, or fn ptr) is known to implement the `Fn` // family of traits where `A` is given by the signature of the type. fn consider_builtin_fn_trait_candidates( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, kind: ty::ClosureKind, ) -> QueryResult<'tcx>; // `Tuple` is implemented if the `Self` type is a tuple. fn consider_builtin_tuple_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // `Pointee` is always implemented. // // See the projection implementation for the `Metadata` types for all of // the built-in types. For structs, the metadata type is given by the struct // tail. fn consider_builtin_pointee_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // A generator (that comes from an `async` desugaring) is known to implement // `Future`, where `O` is given by the generator's return type // that was computed during type-checking. fn consider_builtin_future_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // A generator (that doesn't come from an `async` desugaring) is known to // implement `Generator`, given the resume, yield, // and return types of the generator computed during type-checking. fn consider_builtin_generator_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // The most common forms of unsizing are array to slice, and concrete (Sized) // type into a `dyn Trait`. ADTs and Tuples can also have their final field // unsized if it's generic. fn consider_builtin_unsize_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; // `dyn Trait1` can be unsized to `dyn Trait2` if they are the same trait, or // if `Trait2` is a (transitive) supertrait of `Trait2`. fn consider_builtin_dyn_upcast_candidates( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> Vec>; fn consider_builtin_discriminant_kind_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_builtin_destruct_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_builtin_transmute_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; } impl<'tcx> EvalCtxt<'_, 'tcx> { pub(super) fn assemble_and_evaluate_candidates>( &mut self, goal: Goal<'tcx, G>, ) -> Vec> { debug_assert_eq!(goal, self.resolve_vars_if_possible(goal)); // HACK: `_: Trait` is ambiguous, because it may be satisfied via a builtin rule, // object bound, alias bound, etc. We are unable to determine this until we can at // least structually resolve the type one layer. if goal.predicate.self_ty().is_ty_var() { return vec![Candidate { source: CandidateSource::BuiltinImpl, result: self .evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) .unwrap(), }]; } let mut candidates = Vec::new(); self.assemble_candidates_after_normalizing_self_ty(goal, &mut candidates); self.assemble_impl_candidates(goal, &mut candidates); self.assemble_builtin_impl_candidates(goal, &mut candidates); self.assemble_param_env_candidates(goal, &mut candidates); self.assemble_alias_bound_candidates(goal, &mut candidates); self.assemble_object_bound_candidates(goal, &mut candidates); self.assemble_coherence_unknowable_candidates(goal, &mut candidates); candidates } /// If the self type of a goal is a projection, computing the relevant candidates is difficult. /// /// To deal with this, we first try to normalize the self type and add the candidates for the normalized /// self type to the list of candidates in case that succeeds. We also have to consider candidates with the /// projection as a self type as well #[instrument(level = "debug", skip_all)] fn assemble_candidates_after_normalizing_self_ty>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); // FIXME: We also have to normalize opaque types, not sure where to best fit that in. let &ty::Alias(ty::Projection, projection_ty) = goal.predicate.self_ty().kind() else { return }; let normalized_self_candidates: Result<_, NoSolution> = self.probe(|ecx| { ecx.with_incremented_depth( |ecx| { let result = ecx.evaluate_added_goals_and_make_canonical_response( Certainty::Maybe(MaybeCause::Overflow), )?; Ok(vec![Candidate { source: CandidateSource::BuiltinImpl, result }]) }, |ecx| { let normalized_ty = ecx.next_ty_infer(); let normalizes_to_goal = goal.with( tcx, ty::Binder::dummy(ty::ProjectionPredicate { projection_ty, term: normalized_ty.into(), }), ); ecx.add_goal(normalizes_to_goal); let _ = ecx.try_evaluate_added_goals()?; let normalized_ty = ecx.resolve_vars_if_possible(normalized_ty); // NOTE: Alternatively we could call `evaluate_goal` here and only // have a `Normalized` candidate. This doesn't work as long as we // use `CandidateSource` in winnowing. let goal = goal.with(tcx, goal.predicate.with_self_ty(tcx, normalized_ty)); Ok(ecx.assemble_and_evaluate_candidates(goal)) }, ) }); if let Ok(normalized_self_candidates) = normalized_self_candidates { candidates.extend(normalized_self_candidates); } } #[instrument(level = "debug", skip_all)] fn assemble_impl_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); tcx.for_each_relevant_impl_treating_projections( goal.predicate.trait_def_id(tcx), goal.predicate.self_ty(), TreatProjections::NextSolverLookup, |impl_def_id| match G::consider_impl_candidate(self, goal, impl_def_id) { Ok(result) => candidates .push(Candidate { source: CandidateSource::Impl(impl_def_id), result }), Err(NoSolution) => (), }, ); } #[instrument(level = "debug", skip_all)] fn assemble_builtin_impl_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let lang_items = self.tcx().lang_items(); let trait_def_id = goal.predicate.trait_def_id(self.tcx()); let result = if self.tcx().trait_is_auto(trait_def_id) { G::consider_auto_trait_candidate(self, goal) } else if self.tcx().trait_is_alias(trait_def_id) { G::consider_trait_alias_candidate(self, goal) } else if lang_items.sized_trait() == Some(trait_def_id) { G::consider_builtin_sized_candidate(self, goal) } else if lang_items.copy_trait() == Some(trait_def_id) || lang_items.clone_trait() == Some(trait_def_id) { G::consider_builtin_copy_clone_candidate(self, goal) } else if lang_items.pointer_like() == Some(trait_def_id) { G::consider_builtin_pointer_like_candidate(self, goal) } else if lang_items.fn_ptr_trait() == Some(trait_def_id) { G::consider_builtin_fn_ptr_trait_candidate(self, goal) } else if let Some(kind) = self.tcx().fn_trait_kind_from_def_id(trait_def_id) { G::consider_builtin_fn_trait_candidates(self, goal, kind) } else if lang_items.tuple_trait() == Some(trait_def_id) { G::consider_builtin_tuple_candidate(self, goal) } else if lang_items.pointee_trait() == Some(trait_def_id) { G::consider_builtin_pointee_candidate(self, goal) } else if lang_items.future_trait() == Some(trait_def_id) { G::consider_builtin_future_candidate(self, goal) } else if lang_items.gen_trait() == Some(trait_def_id) { G::consider_builtin_generator_candidate(self, goal) } else if lang_items.unsize_trait() == Some(trait_def_id) { G::consider_builtin_unsize_candidate(self, goal) } else if lang_items.discriminant_kind_trait() == Some(trait_def_id) { G::consider_builtin_discriminant_kind_candidate(self, goal) } else if lang_items.destruct_trait() == Some(trait_def_id) { G::consider_builtin_destruct_candidate(self, goal) } else if lang_items.transmute_trait() == Some(trait_def_id) { G::consider_builtin_transmute_candidate(self, goal) } else { Err(NoSolution) }; match result { Ok(result) => { candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result }) } Err(NoSolution) => (), } // There may be multiple unsize candidates for a trait with several supertraits: // `trait Foo: Bar + Bar` and `dyn Foo: Unsize>` if lang_items.unsize_trait() == Some(trait_def_id) { for result in G::consider_builtin_dyn_upcast_candidates(self, goal) { candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result }); } } } #[instrument(level = "debug", skip_all)] fn assemble_param_env_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { for (i, assumption) in goal.param_env.caller_bounds().iter().enumerate() { match G::consider_implied_clause(self, goal, assumption, []) { Ok(result) => { candidates.push(Candidate { source: CandidateSource::ParamEnv(i), result }) } Err(NoSolution) => (), } } } #[instrument(level = "debug", skip_all)] fn assemble_alias_bound_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let alias_ty = match goal.predicate.self_ty().kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(_) | ty::Dynamic(..) | ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(_) | ty::GeneratorWitnessMIR(..) | ty::Never | ty::Tuple(_) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Error(_) => return, ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) | ty::Bound(..) => bug!("unexpected self type for `{goal:?}`"), ty::Alias(_, alias_ty) => alias_ty, }; for assumption in self.tcx().item_bounds(alias_ty.def_id).subst(self.tcx(), alias_ty.substs) { match G::consider_implied_clause(self, goal, assumption, []) { Ok(result) => { candidates.push(Candidate { source: CandidateSource::AliasBound, result }) } Err(NoSolution) => (), } } } #[instrument(level = "debug", skip_all)] fn assemble_object_bound_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let self_ty = goal.predicate.self_ty(); let bounds = match *self_ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(_) | ty::Alias(..) | ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(_) | ty::GeneratorWitnessMIR(..) | ty::Never | ty::Tuple(_) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Error(_) => return, ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) | ty::Bound(..) => bug!("unexpected self type for `{goal:?}`"), ty::Dynamic(bounds, ..) => bounds, }; let tcx = self.tcx(); let own_bounds: FxIndexSet<_> = bounds.iter().map(|bound| bound.with_self_ty(tcx, self_ty)).collect(); for assumption in elaborate(tcx, own_bounds.iter().copied()) // we only care about bounds that match the `Self` type .filter_only_self() { // FIXME: Predicates are fully elaborated in the object type's existential bounds // list. We want to only consider these pre-elaborated projections, and not other // projection predicates that we reach by elaborating the principal trait ref, // since that'll cause ambiguity. // // We can remove this when we have implemented intersections in responses. if assumption.to_opt_poly_projection_pred().is_some() && !own_bounds.contains(&assumption) { continue; } match G::consider_object_bound_candidate(self, goal, assumption) { Ok(result) => { candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result }) } Err(NoSolution) => (), } } } #[instrument(level = "debug", skip_all)] fn assemble_coherence_unknowable_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { match self.solver_mode() { SolverMode::Normal => return, SolverMode::Coherence => { let trait_ref = goal.predicate.trait_ref(self.tcx()); match coherence::trait_ref_is_knowable(self.tcx(), trait_ref) { Ok(()) => {} Err(_) => match self .evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) { Ok(result) => candidates .push(Candidate { source: CandidateSource::BuiltinImpl, result }), // FIXME: This will be reachable at some point if we're in // `assemble_candidates_after_normalizing_self_ty` and we get a // universe error. We'll deal with it at this point. Err(NoSolution) => bug!("coherence candidate resulted in NoSolution"), }, } } } } /// If there are multiple ways to prove a trait or projection goal, we have /// to somehow try to merge the candidates into one. If that fails, we return /// ambiguity. #[instrument(level = "debug", skip(self), ret)] pub(super) fn merge_candidates( &mut self, mut candidates: Vec>, ) -> QueryResult<'tcx> { // First try merging all candidates. This is complete and fully sound. let responses = candidates.iter().map(|c| c.result).collect::>(); if let Some(result) = self.try_merge_responses(&responses) { return Ok(result); } // We then check whether we should prioritize `ParamEnv` candidates. // // Doing so is incomplete and would therefore be unsound during coherence. match self.solver_mode() { SolverMode::Coherence => (), // Prioritize `ParamEnv` candidates only if they do not guide inference. // // This is still incomplete as we may add incorrect region bounds. SolverMode::Normal => { let param_env_responses = candidates .iter() .filter(|c| matches!(c.source, CandidateSource::ParamEnv(_))) .map(|c| c.result) .collect::>(); if let Some(result) = self.try_merge_responses(¶m_env_responses) { if result.has_only_region_constraints() { return Ok(result); } } } } self.flounder(&responses) } }