//! A constant propagation optimization pass based on dataflow analysis. //! //! Currently, this pass only propagates scalar values. use std::assert_matches::assert_matches; use std::fmt::Formatter; use rustc_abi::{BackendRepr, FIRST_VARIANT, FieldIdx, Size, VariantIdx}; use rustc_const_eval::const_eval::{DummyMachine, throw_machine_stop_str}; use rustc_const_eval::interpret::{ ImmTy, Immediate, InterpCx, OpTy, PlaceTy, Projectable, interp_ok, }; use rustc_data_structures::fx::FxHashMap; use rustc_hir::def::DefKind; use rustc_middle::bug; use rustc_middle::mir::interpret::{InterpResult, Scalar}; use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor}; use rustc_middle::mir::*; use rustc_middle::ty::layout::{HasParamEnv, LayoutOf}; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_mir_dataflow::fmt::DebugWithContext; use rustc_mir_dataflow::lattice::{FlatSet, HasBottom}; use rustc_mir_dataflow::value_analysis::{ Map, PlaceIndex, State, TrackElem, ValueOrPlace, debug_with_context, }; use rustc_mir_dataflow::{Analysis, Results, ResultsVisitor}; use rustc_span::DUMMY_SP; use tracing::{debug, debug_span, instrument}; // These constants are somewhat random guesses and have not been optimized. // If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive). const BLOCK_LIMIT: usize = 100; const PLACE_LIMIT: usize = 100; pub(super) struct DataflowConstProp; impl<'tcx> crate::MirPass<'tcx> for DataflowConstProp { fn is_enabled(&self, sess: &rustc_session::Session) -> bool { sess.mir_opt_level() >= 3 } #[instrument(skip_all level = "debug")] fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { debug!(def_id = ?body.source.def_id()); if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT { debug!("aborted dataflow const prop due too many basic blocks"); return; } // We want to have a somewhat linear runtime w.r.t. the number of statements/terminators. // Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function // applications, where `h` is the height of the lattice. Because the height of our lattice // is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However, // because every transfer function application could traverse the whole map, this becomes // `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of // map nodes is strongly correlated to the number of tracked places, this becomes more or // less `O(n)` if we place a constant limit on the number of tracked places. let place_limit = if tcx.sess.mir_opt_level() < 4 { Some(PLACE_LIMIT) } else { None }; // Decide which places to track during the analysis. let map = Map::new(tcx, body, place_limit); // Perform the actual dataflow analysis. let analysis = ConstAnalysis::new(tcx, body, map); let mut results = debug_span!("analyze").in_scope(|| analysis.iterate_to_fixpoint(tcx, body, None)); // Collect results and patch the body afterwards. let mut visitor = Collector::new(tcx, &body.local_decls); debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor)); let mut patch = visitor.patch; debug_span!("patch").in_scope(|| patch.visit_body_preserves_cfg(body)); } } // Note: Currently, places that have their reference taken cannot be tracked. Although this would // be possible, it has to rely on some aliasing model, which we are not ready to commit to yet. // Because of that, we can assume that the only way to change the value behind a tracked place is // by direct assignment. struct ConstAnalysis<'a, 'tcx> { map: Map<'tcx>, tcx: TyCtxt<'tcx>, local_decls: &'a LocalDecls<'tcx>, ecx: InterpCx<'tcx, DummyMachine>, param_env: ty::ParamEnv<'tcx>, } impl<'tcx> Analysis<'tcx> for ConstAnalysis<'_, 'tcx> { type Domain = State>; const NAME: &'static str = "ConstAnalysis"; // The bottom state denotes uninitialized memory. Because we are only doing a sound // approximation of the actual execution, we can also use this state for places where access // would be UB. fn bottom_value(&self, _body: &Body<'tcx>) -> Self::Domain { State::Unreachable } fn initialize_start_block(&self, body: &Body<'tcx>, state: &mut Self::Domain) { // The initial state maps all tracked places of argument projections to ⊤ and the rest to ⊥. assert_matches!(state, State::Unreachable); *state = State::new_reachable(); for arg in body.args_iter() { state.flood(PlaceRef { local: arg, projection: &[] }, &self.map); } } fn apply_statement_effect( &mut self, state: &mut Self::Domain, statement: &Statement<'tcx>, _location: Location, ) { if state.is_reachable() { self.handle_statement(statement, state); } } fn apply_terminator_effect<'mir>( &mut self, state: &mut Self::Domain, terminator: &'mir Terminator<'tcx>, _location: Location, ) -> TerminatorEdges<'mir, 'tcx> { if state.is_reachable() { self.handle_terminator(terminator, state) } else { TerminatorEdges::None } } fn apply_call_return_effect( &mut self, state: &mut Self::Domain, _block: BasicBlock, return_places: CallReturnPlaces<'_, 'tcx>, ) { if state.is_reachable() { self.handle_call_return(return_places, state) } } } impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> { fn new(tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, map: Map<'tcx>) -> Self { let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id()); Self { map, tcx, local_decls: &body.local_decls, ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine), param_env, } } fn handle_statement(&self, statement: &Statement<'tcx>, state: &mut State>) { match &statement.kind { StatementKind::Assign(box (place, rvalue)) => { self.handle_assign(*place, rvalue, state); } StatementKind::SetDiscriminant { box place, variant_index } => { self.handle_set_discriminant(*place, *variant_index, state); } StatementKind::Intrinsic(box intrinsic) => { self.handle_intrinsic(intrinsic); } StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => { // StorageLive leaves the local in an uninitialized state. // StorageDead makes it UB to access the local afterwards. state.flood_with( Place::from(*local).as_ref(), &self.map, FlatSet::::BOTTOM, ); } StatementKind::Deinit(box place) => { // Deinit makes the place uninitialized. state.flood_with(place.as_ref(), &self.map, FlatSet::::BOTTOM); } StatementKind::Retag(..) => { // We don't track references. } StatementKind::ConstEvalCounter | StatementKind::Nop | StatementKind::FakeRead(..) | StatementKind::PlaceMention(..) | StatementKind::Coverage(..) | StatementKind::AscribeUserType(..) => (), } } fn handle_intrinsic(&self, intrinsic: &NonDivergingIntrinsic<'tcx>) { match intrinsic { NonDivergingIntrinsic::Assume(..) => { // Could use this, but ignoring it is sound. } NonDivergingIntrinsic::CopyNonOverlapping(CopyNonOverlapping { dst: _, src: _, count: _, }) => { // This statement represents `*dst = *src`, `count` times. } } } fn handle_operand( &self, operand: &Operand<'tcx>, state: &mut State>, ) -> ValueOrPlace> { match operand { Operand::Constant(box constant) => { ValueOrPlace::Value(self.handle_constant(constant, state)) } Operand::Copy(place) | Operand::Move(place) => { // On move, we would ideally flood the place with bottom. But with the current // framework this is not possible (similar to `InterpCx::eval_operand`). self.map.find(place.as_ref()).map(ValueOrPlace::Place).unwrap_or(ValueOrPlace::TOP) } } } /// The effect of a successful function call return should not be /// applied here, see [`Analysis::apply_terminator_effect`]. fn handle_terminator<'mir>( &self, terminator: &'mir Terminator<'tcx>, state: &mut State>, ) -> TerminatorEdges<'mir, 'tcx> { match &terminator.kind { TerminatorKind::Call { .. } | TerminatorKind::InlineAsm { .. } => { // Effect is applied by `handle_call_return`. } TerminatorKind::Drop { place, .. } => { state.flood_with(place.as_ref(), &self.map, FlatSet::::BOTTOM); } TerminatorKind::Yield { .. } => { // They would have an effect, but are not allowed in this phase. bug!("encountered disallowed terminator"); } TerminatorKind::SwitchInt { discr, targets } => { return self.handle_switch_int(discr, targets, state); } TerminatorKind::TailCall { .. } => { // FIXME(explicit_tail_calls): determine if we need to do something here (probably // not) } TerminatorKind::Goto { .. } | TerminatorKind::UnwindResume | TerminatorKind::UnwindTerminate(_) | TerminatorKind::Return | TerminatorKind::Unreachable | TerminatorKind::Assert { .. } | TerminatorKind::CoroutineDrop | TerminatorKind::FalseEdge { .. } | TerminatorKind::FalseUnwind { .. } => { // These terminators have no effect on the analysis. } } terminator.edges() } fn handle_call_return( &self, return_places: CallReturnPlaces<'_, 'tcx>, state: &mut State>, ) { return_places.for_each(|place| { state.flood(place.as_ref(), &self.map); }) } fn handle_set_discriminant( &self, place: Place<'tcx>, variant_index: VariantIdx, state: &mut State>, ) { state.flood_discr(place.as_ref(), &self.map); if self.map.find_discr(place.as_ref()).is_some() { let enum_ty = place.ty(self.local_decls, self.tcx).ty; if let Some(discr) = self.eval_discriminant(enum_ty, variant_index) { state.assign_discr( place.as_ref(), ValueOrPlace::Value(FlatSet::Elem(discr)), &self.map, ); } } } fn handle_assign( &self, target: Place<'tcx>, rvalue: &Rvalue<'tcx>, state: &mut State>, ) { match rvalue { Rvalue::Use(operand) => { state.flood(target.as_ref(), &self.map); if let Some(target) = self.map.find(target.as_ref()) { self.assign_operand(state, target, operand); } } Rvalue::CopyForDeref(rhs) => { state.flood(target.as_ref(), &self.map); if let Some(target) = self.map.find(target.as_ref()) { self.assign_operand(state, target, &Operand::Copy(*rhs)); } } Rvalue::Aggregate(kind, operands) => { // If we assign `target = Enum::Variant#0(operand)`, // we must make sure that all `target as Variant#i` are `Top`. state.flood(target.as_ref(), &self.map); let Some(target_idx) = self.map.find(target.as_ref()) else { return }; let (variant_target, variant_index) = match **kind { AggregateKind::Tuple | AggregateKind::Closure(..) => (Some(target_idx), None), AggregateKind::Adt(def_id, variant_index, ..) => { match self.tcx.def_kind(def_id) { DefKind::Struct => (Some(target_idx), None), DefKind::Enum => ( self.map.apply(target_idx, TrackElem::Variant(variant_index)), Some(variant_index), ), _ => return, } } _ => return, }; if let Some(variant_target_idx) = variant_target { for (field_index, operand) in operands.iter_enumerated() { if let Some(field) = self.map.apply(variant_target_idx, TrackElem::Field(field_index)) { self.assign_operand(state, field, operand); } } } if let Some(variant_index) = variant_index && let Some(discr_idx) = self.map.apply(target_idx, TrackElem::Discriminant) { // We are assigning the discriminant as part of an aggregate. // This discriminant can only alias a variant field's value if the operand // had an invalid value for that type. // Using invalid values is UB, so we are allowed to perform the assignment // without extra flooding. let enum_ty = target.ty(self.local_decls, self.tcx).ty; if let Some(discr_val) = self.eval_discriminant(enum_ty, variant_index) { state.insert_value_idx(discr_idx, FlatSet::Elem(discr_val), &self.map); } } } Rvalue::BinaryOp(op, box (left, right)) if op.is_overflowing() => { // Flood everything now, so we can use `insert_value_idx` directly later. state.flood(target.as_ref(), &self.map); let Some(target) = self.map.find(target.as_ref()) else { return }; let value_target = self.map.apply(target, TrackElem::Field(0_u32.into())); let overflow_target = self.map.apply(target, TrackElem::Field(1_u32.into())); if value_target.is_some() || overflow_target.is_some() { let (val, overflow) = self.binary_op(state, *op, left, right); if let Some(value_target) = value_target { // We have flooded `target` earlier. state.insert_value_idx(value_target, val, &self.map); } if let Some(overflow_target) = overflow_target { // We have flooded `target` earlier. state.insert_value_idx(overflow_target, overflow, &self.map); } } } Rvalue::Cast( CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _), operand, _, ) => { let pointer = self.handle_operand(operand, state); state.assign(target.as_ref(), pointer, &self.map); if let Some(target_len) = self.map.find_len(target.as_ref()) && let operand_ty = operand.ty(self.local_decls, self.tcx) && let Some(operand_ty) = operand_ty.builtin_deref(true) && let ty::Array(_, len) = operand_ty.kind() && let Some(len) = Const::Ty(self.tcx.types.usize, *len) .try_eval_scalar_int(self.tcx, self.param_env) { state.insert_value_idx(target_len, FlatSet::Elem(len.into()), &self.map); } } _ => { let result = self.handle_rvalue(rvalue, state); state.assign(target.as_ref(), result, &self.map); } } } fn handle_rvalue( &self, rvalue: &Rvalue<'tcx>, state: &mut State>, ) -> ValueOrPlace> { let val = match rvalue { Rvalue::Len(place) => { let place_ty = place.ty(self.local_decls, self.tcx); if let ty::Array(_, len) = place_ty.ty.kind() { Const::Ty(self.tcx.types.usize, *len) .try_eval_scalar(self.tcx, self.param_env) .map_or(FlatSet::Top, FlatSet::Elem) } else if let [ProjectionElem::Deref] = place.projection[..] { state.get_len(place.local.into(), &self.map) } else { FlatSet::Top } } Rvalue::Cast(CastKind::IntToInt | CastKind::IntToFloat, operand, ty) => { let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else { return ValueOrPlace::Value(FlatSet::Top); }; match self.eval_operand(operand, state) { FlatSet::Elem(op) => self .ecx .int_to_int_or_float(&op, layout) .discard_err() .map_or(FlatSet::Top, |result| self.wrap_immediate(*result)), FlatSet::Bottom => FlatSet::Bottom, FlatSet::Top => FlatSet::Top, } } Rvalue::Cast(CastKind::FloatToInt | CastKind::FloatToFloat, operand, ty) => { let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else { return ValueOrPlace::Value(FlatSet::Top); }; match self.eval_operand(operand, state) { FlatSet::Elem(op) => self .ecx .float_to_float_or_int(&op, layout) .discard_err() .map_or(FlatSet::Top, |result| self.wrap_immediate(*result)), FlatSet::Bottom => FlatSet::Bottom, FlatSet::Top => FlatSet::Top, } } Rvalue::Cast(CastKind::Transmute, operand, _) => { match self.eval_operand(operand, state) { FlatSet::Elem(op) => self.wrap_immediate(*op), FlatSet::Bottom => FlatSet::Bottom, FlatSet::Top => FlatSet::Top, } } Rvalue::BinaryOp(op, box (left, right)) if !op.is_overflowing() => { // Overflows must be ignored here. // The overflowing operators are handled in `handle_assign`. let (val, _overflow) = self.binary_op(state, *op, left, right); val } Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) { FlatSet::Elem(value) => self .ecx .unary_op(*op, &value) .discard_err() .map_or(FlatSet::Top, |val| self.wrap_immediate(*val)), FlatSet::Bottom => FlatSet::Bottom, FlatSet::Top => FlatSet::Top, }, Rvalue::NullaryOp(null_op, ty) => { let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else { return ValueOrPlace::Value(FlatSet::Top); }; let val = match null_op { NullOp::SizeOf if layout.is_sized() => layout.size.bytes(), NullOp::AlignOf if layout.is_sized() => layout.align.abi.bytes(), NullOp::OffsetOf(fields) => self .ecx .tcx .offset_of_subfield(self.ecx.param_env(), layout, fields.iter()) .bytes(), _ => return ValueOrPlace::Value(FlatSet::Top), }; FlatSet::Elem(Scalar::from_target_usize(val, &self.tcx)) } Rvalue::Discriminant(place) => state.get_discr(place.as_ref(), &self.map), Rvalue::Use(operand) => return self.handle_operand(operand, state), Rvalue::CopyForDeref(place) => { return self.handle_operand(&Operand::Copy(*place), state); } Rvalue::Ref(..) | Rvalue::RawPtr(..) => { // We don't track such places. return ValueOrPlace::TOP; } Rvalue::Repeat(..) | Rvalue::ThreadLocalRef(..) | Rvalue::Cast(..) | Rvalue::BinaryOp(..) | Rvalue::Aggregate(..) | Rvalue::ShallowInitBox(..) => { // No modification is possible through these r-values. return ValueOrPlace::TOP; } }; ValueOrPlace::Value(val) } fn handle_constant( &self, constant: &ConstOperand<'tcx>, _state: &mut State>, ) -> FlatSet { constant .const_ .try_eval_scalar(self.tcx, self.param_env) .map_or(FlatSet::Top, FlatSet::Elem) } fn handle_switch_int<'mir>( &self, discr: &'mir Operand<'tcx>, targets: &'mir SwitchTargets, state: &mut State>, ) -> TerminatorEdges<'mir, 'tcx> { let value = match self.handle_operand(discr, state) { ValueOrPlace::Value(value) => value, ValueOrPlace::Place(place) => state.get_idx(place, &self.map), }; match value { // We are branching on uninitialized data, this is UB, treat it as unreachable. // This allows the set of visited edges to grow monotonically with the lattice. FlatSet::Bottom => TerminatorEdges::None, FlatSet::Elem(scalar) => { let choice = scalar.assert_scalar_int().to_bits_unchecked(); TerminatorEdges::Single(targets.target_for_value(choice)) } FlatSet::Top => TerminatorEdges::SwitchInt { discr, targets }, } } /// The caller must have flooded `place`. fn assign_operand( &self, state: &mut State>, place: PlaceIndex, operand: &Operand<'tcx>, ) { match operand { Operand::Copy(rhs) | Operand::Move(rhs) => { if let Some(rhs) = self.map.find(rhs.as_ref()) { state.insert_place_idx(place, rhs, &self.map); } else if rhs.projection.first() == Some(&PlaceElem::Deref) && let FlatSet::Elem(pointer) = state.get(rhs.local.into(), &self.map) && let rhs_ty = self.local_decls[rhs.local].ty && let Ok(rhs_layout) = self.tcx.layout_of(self.param_env.and(rhs_ty)) { let op = ImmTy::from_scalar(pointer, rhs_layout).into(); self.assign_constant(state, place, op, rhs.projection); } } Operand::Constant(box constant) => { if let Some(constant) = self.ecx.eval_mir_constant(&constant.const_, constant.span, None).discard_err() { self.assign_constant(state, place, constant, &[]); } } } } /// The caller must have flooded `place`. /// /// Perform: `place = operand.projection`. #[instrument(level = "trace", skip(self, state))] fn assign_constant( &self, state: &mut State>, place: PlaceIndex, mut operand: OpTy<'tcx>, projection: &[PlaceElem<'tcx>], ) { for &(mut proj_elem) in projection { if let PlaceElem::Index(index) = proj_elem { if let FlatSet::Elem(index) = state.get(index.into(), &self.map) && let Some(offset) = index.to_target_usize(&self.tcx).discard_err() && let Some(min_length) = offset.checked_add(1) { proj_elem = PlaceElem::ConstantIndex { offset, min_length, from_end: false }; } else { return; } } operand = if let Some(operand) = self.ecx.project(&operand, proj_elem).discard_err() { operand } else { return; } } self.map.for_each_projection_value( place, operand, &mut |elem, op| match elem { TrackElem::Field(idx) => self.ecx.project_field(op, idx.as_usize()).discard_err(), TrackElem::Variant(idx) => self.ecx.project_downcast(op, idx).discard_err(), TrackElem::Discriminant => { let variant = self.ecx.read_discriminant(op).discard_err()?; let discr_value = self.ecx.discriminant_for_variant(op.layout.ty, variant).discard_err()?; Some(discr_value.into()) } TrackElem::DerefLen => { let op: OpTy<'_> = self.ecx.deref_pointer(op).discard_err()?.into(); let len_usize = op.len(&self.ecx).discard_err()?; let layout = self.tcx.layout_of(self.param_env.and(self.tcx.types.usize)).unwrap(); Some(ImmTy::from_uint(len_usize, layout).into()) } }, &mut |place, op| { if let Some(imm) = self.ecx.read_immediate_raw(op).discard_err() && let Some(imm) = imm.right() { let elem = self.wrap_immediate(*imm); state.insert_value_idx(place, elem, &self.map); } }, ); } fn binary_op( &self, state: &mut State>, op: BinOp, left: &Operand<'tcx>, right: &Operand<'tcx>, ) -> (FlatSet, FlatSet) { let left = self.eval_operand(left, state); let right = self.eval_operand(right, state); match (left, right) { (FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom), // Both sides are known, do the actual computation. (FlatSet::Elem(left), FlatSet::Elem(right)) => { match self.ecx.binary_op(op, &left, &right).discard_err() { // Ideally this would return an Immediate, since it's sometimes // a pair and sometimes not. But as a hack we always return a pair // and just make the 2nd component `Bottom` when it does not exist. Some(val) => { if matches!(val.layout.backend_repr, BackendRepr::ScalarPair(..)) { let (val, overflow) = val.to_scalar_pair(); (FlatSet::Elem(val), FlatSet::Elem(overflow)) } else { (FlatSet::Elem(val.to_scalar()), FlatSet::Bottom) } } _ => (FlatSet::Top, FlatSet::Top), } } // Exactly one side is known, attempt some algebraic simplifications. (FlatSet::Elem(const_arg), _) | (_, FlatSet::Elem(const_arg)) => { let layout = const_arg.layout; if !matches!(layout.backend_repr, rustc_abi::BackendRepr::Scalar(..)) { return (FlatSet::Top, FlatSet::Top); } let arg_scalar = const_arg.to_scalar(); let Some(arg_value) = arg_scalar.to_bits(layout.size).discard_err() else { return (FlatSet::Top, FlatSet::Top); }; match op { BinOp::BitAnd if arg_value == 0 => (FlatSet::Elem(arg_scalar), FlatSet::Bottom), BinOp::BitOr if arg_value == layout.size.truncate(u128::MAX) || (layout.ty.is_bool() && arg_value == 1) => { (FlatSet::Elem(arg_scalar), FlatSet::Bottom) } BinOp::Mul if layout.ty.is_integral() && arg_value == 0 => { (FlatSet::Elem(arg_scalar), FlatSet::Elem(Scalar::from_bool(false))) } _ => (FlatSet::Top, FlatSet::Top), } } (FlatSet::Top, FlatSet::Top) => (FlatSet::Top, FlatSet::Top), } } fn eval_operand( &self, op: &Operand<'tcx>, state: &mut State>, ) -> FlatSet> { let value = match self.handle_operand(op, state) { ValueOrPlace::Value(value) => value, ValueOrPlace::Place(place) => state.get_idx(place, &self.map), }; match value { FlatSet::Top => FlatSet::Top, FlatSet::Elem(scalar) => { let ty = op.ty(self.local_decls, self.tcx); self.tcx.layout_of(self.param_env.and(ty)).map_or(FlatSet::Top, |layout| { FlatSet::Elem(ImmTy::from_scalar(scalar, layout)) }) } FlatSet::Bottom => FlatSet::Bottom, } } fn eval_discriminant(&self, enum_ty: Ty<'tcx>, variant_index: VariantIdx) -> Option { if !enum_ty.is_enum() { return None; } let enum_ty_layout = self.tcx.layout_of(self.param_env.and(enum_ty)).ok()?; let discr_value = self.ecx.discriminant_for_variant(enum_ty_layout.ty, variant_index).discard_err()?; Some(discr_value.to_scalar()) } fn wrap_immediate(&self, imm: Immediate) -> FlatSet { match imm { Immediate::Scalar(scalar) => FlatSet::Elem(scalar), Immediate::Uninit => FlatSet::Bottom, _ => FlatSet::Top, } } } /// This is used to visualize the dataflow analysis. impl<'tcx> DebugWithContext> for State> { fn fmt_with(&self, ctxt: &ConstAnalysis<'_, 'tcx>, f: &mut Formatter<'_>) -> std::fmt::Result { match self { State::Reachable(values) => debug_with_context(values, None, &ctxt.map, f), State::Unreachable => write!(f, "unreachable"), } } fn fmt_diff_with( &self, old: &Self, ctxt: &ConstAnalysis<'_, 'tcx>, f: &mut Formatter<'_>, ) -> std::fmt::Result { match (self, old) { (State::Reachable(this), State::Reachable(old)) => { debug_with_context(this, Some(old), &ctxt.map, f) } _ => Ok(()), // Consider printing something here. } } } struct Patch<'tcx> { tcx: TyCtxt<'tcx>, /// For a given MIR location, this stores the values of the operands used by that location. In /// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are /// properly captured. (This may become UB soon, but it is currently emitted even by safe code.) before_effect: FxHashMap<(Location, Place<'tcx>), Const<'tcx>>, /// Stores the assigned values for assignments where the Rvalue is constant. assignments: FxHashMap>, } impl<'tcx> Patch<'tcx> { pub(crate) fn new(tcx: TyCtxt<'tcx>) -> Self { Self { tcx, before_effect: FxHashMap::default(), assignments: FxHashMap::default() } } fn make_operand(&self, const_: Const<'tcx>) -> Operand<'tcx> { Operand::Constant(Box::new(ConstOperand { span: DUMMY_SP, user_ty: None, const_ })) } } struct Collector<'a, 'tcx> { patch: Patch<'tcx>, local_decls: &'a LocalDecls<'tcx>, } impl<'a, 'tcx> Collector<'a, 'tcx> { pub(crate) fn new(tcx: TyCtxt<'tcx>, local_decls: &'a LocalDecls<'tcx>) -> Self { Self { patch: Patch::new(tcx), local_decls } } #[instrument(level = "trace", skip(self, ecx, map), ret)] fn try_make_constant( &self, ecx: &mut InterpCx<'tcx, DummyMachine>, place: Place<'tcx>, state: &State>, map: &Map<'tcx>, ) -> Option> { let ty = place.ty(self.local_decls, self.patch.tcx).ty; let layout = ecx.layout_of(ty).ok()?; if layout.is_zst() { return Some(Const::zero_sized(ty)); } if layout.is_unsized() { return None; } let place = map.find(place.as_ref())?; if layout.backend_repr.is_scalar() && let Some(value) = propagatable_scalar(place, state, map) { return Some(Const::Val(ConstValue::Scalar(value), ty)); } if matches!(layout.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) { let alloc_id = ecx .intern_with_temp_alloc(layout, |ecx, dest| { try_write_constant(ecx, dest, place, ty, state, map) }) .discard_err()?; return Some(Const::Val(ConstValue::Indirect { alloc_id, offset: Size::ZERO }, ty)); } None } } #[instrument(level = "trace", skip(map), ret)] fn propagatable_scalar( place: PlaceIndex, state: &State>, map: &Map<'_>, ) -> Option { if let FlatSet::Elem(value) = state.get_idx(place, map) && value.try_to_scalar_int().is_ok() { // Do not attempt to propagate pointers, as we may fail to preserve their identity. Some(value) } else { None } } #[instrument(level = "trace", skip(ecx, state, map), ret)] fn try_write_constant<'tcx>( ecx: &mut InterpCx<'tcx, DummyMachine>, dest: &PlaceTy<'tcx>, place: PlaceIndex, ty: Ty<'tcx>, state: &State>, map: &Map<'tcx>, ) -> InterpResult<'tcx> { let layout = ecx.layout_of(ty)?; // Fast path for ZSTs. if layout.is_zst() { return interp_ok(()); } // Fast path for scalars. if layout.backend_repr.is_scalar() && let Some(value) = propagatable_scalar(place, state, map) { return ecx.write_immediate(Immediate::Scalar(value), dest); } match ty.kind() { // ZSTs. Nothing to do. ty::FnDef(..) => {} // Those are scalars, must be handled above. ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char => throw_machine_stop_str!("primitive type with provenance"), ty::Tuple(elem_tys) => { for (i, elem) in elem_tys.iter().enumerate() { let Some(field) = map.apply(place, TrackElem::Field(FieldIdx::from_usize(i))) else { throw_machine_stop_str!("missing field in tuple") }; let field_dest = ecx.project_field(dest, i)?; try_write_constant(ecx, &field_dest, field, elem, state, map)?; } } ty::Adt(def, args) => { if def.is_union() { throw_machine_stop_str!("cannot propagate unions") } let (variant_idx, variant_def, variant_place, variant_dest) = if def.is_enum() { let Some(discr) = map.apply(place, TrackElem::Discriminant) else { throw_machine_stop_str!("missing discriminant for enum") }; let FlatSet::Elem(Scalar::Int(discr)) = state.get_idx(discr, map) else { throw_machine_stop_str!("discriminant with provenance") }; let discr_bits = discr.to_bits(discr.size()); let Some((variant, _)) = def.discriminants(*ecx.tcx).find(|(_, var)| discr_bits == var.val) else { throw_machine_stop_str!("illegal discriminant for enum") }; let Some(variant_place) = map.apply(place, TrackElem::Variant(variant)) else { throw_machine_stop_str!("missing variant for enum") }; let variant_dest = ecx.project_downcast(dest, variant)?; (variant, def.variant(variant), variant_place, variant_dest) } else { (FIRST_VARIANT, def.non_enum_variant(), place, dest.clone()) }; for (i, field) in variant_def.fields.iter_enumerated() { let ty = field.ty(*ecx.tcx, args); let Some(field) = map.apply(variant_place, TrackElem::Field(i)) else { throw_machine_stop_str!("missing field in ADT") }; let field_dest = ecx.project_field(&variant_dest, i.as_usize())?; try_write_constant(ecx, &field_dest, field, ty, state, map)?; } ecx.write_discriminant(variant_idx, dest)?; } // Unsupported for now. ty::Array(_, _) | ty::Pat(_, _) // Do not attempt to support indirection in constants. | ty::Ref(..) | ty::RawPtr(..) | ty::FnPtr(..) | ty::Str | ty::Slice(_) | ty::Never | ty::Foreign(..) | ty::Alias(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Coroutine(..) | ty::Dynamic(..) => throw_machine_stop_str!("unsupported type"), ty::Error(_) | ty::Infer(..) | ty::CoroutineWitness(..) => bug!(), } interp_ok(()) } impl<'mir, 'tcx> ResultsVisitor<'mir, 'tcx, Results<'tcx, ConstAnalysis<'_, 'tcx>>> for Collector<'_, 'tcx> { type Domain = State>; #[instrument(level = "trace", skip(self, results, statement))] fn visit_statement_before_primary_effect( &mut self, results: &mut Results<'tcx, ConstAnalysis<'_, 'tcx>>, state: &Self::Domain, statement: &'mir Statement<'tcx>, location: Location, ) { match &statement.kind { StatementKind::Assign(box (_, rvalue)) => { OperandCollector { state, visitor: self, ecx: &mut results.analysis.ecx, map: &results.analysis.map, } .visit_rvalue(rvalue, location); } _ => (), } } #[instrument(level = "trace", skip(self, results, statement))] fn visit_statement_after_primary_effect( &mut self, results: &mut Results<'tcx, ConstAnalysis<'_, 'tcx>>, state: &Self::Domain, statement: &'mir Statement<'tcx>, location: Location, ) { match statement.kind { StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => { // Don't overwrite the assignment if it already uses a constant (to keep the span). } StatementKind::Assign(box (place, _)) => { if let Some(value) = self.try_make_constant( &mut results.analysis.ecx, place, state, &results.analysis.map, ) { self.patch.assignments.insert(location, value); } } _ => (), } } fn visit_terminator_before_primary_effect( &mut self, results: &mut Results<'tcx, ConstAnalysis<'_, 'tcx>>, state: &Self::Domain, terminator: &'mir Terminator<'tcx>, location: Location, ) { OperandCollector { state, visitor: self, ecx: &mut results.analysis.ecx, map: &results.analysis.map, } .visit_terminator(terminator, location); } } impl<'tcx> MutVisitor<'tcx> for Patch<'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) { if let Some(value) = self.assignments.get(&location) { match &mut statement.kind { StatementKind::Assign(box (_, rvalue)) => { *rvalue = Rvalue::Use(self.make_operand(*value)); } _ => bug!("found assignment info for non-assign statement"), } } else { self.super_statement(statement, location); } } fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) { match operand { Operand::Copy(place) | Operand::Move(place) => { if let Some(value) = self.before_effect.get(&(location, *place)) { *operand = self.make_operand(*value); } else if !place.projection.is_empty() { self.super_operand(operand, location) } } Operand::Constant(_) => {} } } fn process_projection_elem( &mut self, elem: PlaceElem<'tcx>, location: Location, ) -> Option> { if let PlaceElem::Index(local) = elem { let offset = self.before_effect.get(&(location, local.into()))?; let offset = offset.try_to_scalar()?; let offset = offset.to_target_usize(&self.tcx).discard_err()?; let min_length = offset.checked_add(1)?; Some(PlaceElem::ConstantIndex { offset, min_length, from_end: false }) } else { None } } } struct OperandCollector<'a, 'b, 'tcx> { state: &'a State>, visitor: &'a mut Collector<'b, 'tcx>, ecx: &'a mut InterpCx<'tcx, DummyMachine>, map: &'a Map<'tcx>, } impl<'tcx> Visitor<'tcx> for OperandCollector<'_, '_, 'tcx> { fn visit_projection_elem( &mut self, _: PlaceRef<'tcx>, elem: PlaceElem<'tcx>, _: PlaceContext, location: Location, ) { if let PlaceElem::Index(local) = elem && let Some(value) = self.visitor.try_make_constant(self.ecx, local.into(), self.state, self.map) { self.visitor.patch.before_effect.insert((location, local.into()), value); } } fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) { if let Some(place) = operand.place() { if let Some(value) = self.visitor.try_make_constant(self.ecx, place, self.state, self.map) { self.visitor.patch.before_effect.insert((location, place), value); } else if !place.projection.is_empty() { // Try to propagate into `Index` projections. self.super_operand(operand, location) } } } }