// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Set and unset common attributes on LLVM values. use std::ffi::CString; use rustc::hir::{CodegenFnAttrFlags, CodegenFnAttrs}; use rustc::hir::def_id::{DefId, LOCAL_CRATE}; use rustc::session::Session; use rustc::session::config::Sanitizer; use rustc::ty::TyCtxt; use rustc::ty::layout::HasTyCtxt; use rustc::ty::query::Providers; use rustc_data_structures::sync::Lrc; use rustc_data_structures::fx::FxHashMap; use rustc_target::spec::PanicStrategy; use attributes; use llvm::{self, Attribute}; use llvm::AttributePlace::Function; use llvm_util; pub use syntax::attr::{self, InlineAttr}; use context::CodegenCx; use value::Value; /// Mark LLVM function to use provided inline heuristic. #[inline] pub fn inline(cx: &CodegenCx<'ll, '_>, val: &'ll Value, inline: InlineAttr) { use self::InlineAttr::*; match inline { Hint => Attribute::InlineHint.apply_llfn(Function, val), Always => Attribute::AlwaysInline.apply_llfn(Function, val), Never => { if cx.tcx().sess.target.target.arch != "amdgpu" { Attribute::NoInline.apply_llfn(Function, val); } }, None => { Attribute::InlineHint.unapply_llfn(Function, val); Attribute::AlwaysInline.unapply_llfn(Function, val); Attribute::NoInline.unapply_llfn(Function, val); }, }; } /// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function. #[inline] pub fn emit_uwtable(val: &'ll Value, emit: bool) { Attribute::UWTable.toggle_llfn(Function, val, emit); } /// Tell LLVM whether the function can or cannot unwind. #[inline] pub fn unwind(val: &'ll Value, can_unwind: bool) { Attribute::NoUnwind.toggle_llfn(Function, val, !can_unwind); } /// Tell LLVM whether it should optimize function for size. #[inline] #[allow(dead_code)] // possibly useful function pub fn set_optimize_for_size(val: &'ll Value, optimize: bool) { Attribute::OptimizeForSize.toggle_llfn(Function, val, optimize); } /// Tell LLVM if this function should be 'naked', i.e. skip the epilogue and prologue. #[inline] pub fn naked(val: &'ll Value, is_naked: bool) { Attribute::Naked.toggle_llfn(Function, val, is_naked); } pub fn set_frame_pointer_elimination(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) { if cx.sess().must_not_eliminate_frame_pointers() { llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("no-frame-pointer-elim"), const_cstr!("true")); } } pub fn set_probestack(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) { // Only use stack probes if the target specification indicates that we // should be using stack probes if !cx.sess().target.target.options.stack_probes { return } // Currently stack probes seem somewhat incompatible with the address // sanitizer. With asan we're already protected from stack overflow anyway // so we don't really need stack probes regardless. if let Some(Sanitizer::Address) = cx.sess().opts.debugging_opts.sanitizer { return } // probestack doesn't play nice either with pgo-gen. if cx.sess().opts.debugging_opts.pgo_gen.is_some() { return; } // probestack doesn't play nice either with gcov profiling. if cx.sess().opts.debugging_opts.profile { return; } // Flag our internal `__rust_probestack` function as the stack probe symbol. // This is defined in the `compiler-builtins` crate for each architecture. llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("probe-stack"), const_cstr!("__rust_probestack")); } pub fn llvm_target_features(sess: &Session) -> impl Iterator { const RUSTC_SPECIFIC_FEATURES: &[&str] = &[ "crt-static", ]; let cmdline = sess.opts.cg.target_feature.split(',') .filter(|f| !RUSTC_SPECIFIC_FEATURES.iter().any(|s| f.contains(s))); sess.target.target.options.features.split(',') .chain(cmdline) .filter(|l| !l.is_empty()) } pub fn apply_target_cpu_attr(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) { let cpu = llvm_util::target_cpu(cx.tcx.sess); let target_cpu = CString::new(cpu).unwrap(); llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("target-cpu"), target_cpu.as_c_str()); } /// Sets the `NonLazyBind` LLVM attribute on a given function, /// assuming the codegen options allow skipping the PLT. pub fn non_lazy_bind(sess: &Session, llfn: &'ll Value) { // Don't generate calls through PLT if it's not necessary if !sess.needs_plt() { Attribute::NonLazyBind.apply_llfn(Function, llfn); } } /// Composite function which sets LLVM attributes for function depending on its AST (#[attribute]) /// attributes. pub fn from_fn_attrs( cx: &CodegenCx<'ll, '_>, llfn: &'ll Value, id: Option, ) { let codegen_fn_attrs = id.map(|id| cx.tcx.codegen_fn_attrs(id)) .unwrap_or(CodegenFnAttrs::new()); inline(cx, llfn, codegen_fn_attrs.inline); // The `uwtable` attribute according to LLVM is: // // This attribute indicates that the ABI being targeted requires that an // unwind table entry be produced for this function even if we can show // that no exceptions passes by it. This is normally the case for the // ELF x86-64 abi, but it can be disabled for some compilation units. // // Typically when we're compiling with `-C panic=abort` (which implies this // `no_landing_pads` check) we don't need `uwtable` because we can't // generate any exceptions! On Windows, however, exceptions include other // events such as illegal instructions, segfaults, etc. This means that on // Windows we end up still needing the `uwtable` attribute even if the `-C // panic=abort` flag is passed. // // You can also find more info on why Windows is whitelisted here in: // https://bugzilla.mozilla.org/show_bug.cgi?id=1302078 if !cx.sess().no_landing_pads() || cx.sess().target.target.options.requires_uwtable { attributes::emit_uwtable(llfn, true); } set_frame_pointer_elimination(cx, llfn); set_probestack(cx, llfn); if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::COLD) { Attribute::Cold.apply_llfn(Function, llfn); } if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) { naked(llfn, true); } if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::ALLOCATOR) { Attribute::NoAlias.apply_llfn( llvm::AttributePlace::ReturnValue, llfn); } let can_unwind = if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::UNWIND) { Some(true) } else if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND) { Some(false) // Perhaps questionable, but we assume that anything defined // *in Rust code* may unwind. Foreign items like `extern "C" { // fn foo(); }` are assumed not to unwind **unless** they have // a `#[unwind]` attribute. } else if id.map(|id| !cx.tcx.is_foreign_item(id)).unwrap_or(false) { Some(true) } else { None }; match can_unwind { Some(false) => attributes::unwind(llfn, false), Some(true) if cx.tcx.sess.panic_strategy() == PanicStrategy::Unwind => { attributes::unwind(llfn, true); } Some(true) | None => {} } // Always annotate functions with the target-cpu they are compiled for. // Without this, ThinLTO won't inline Rust functions into Clang generated // functions (because Clang annotates functions this way too). // NOTE: For now we just apply this if -Zcross-lang-lto is specified, since // it introduce a little overhead and isn't really necessary otherwise. if cx.tcx.sess.opts.debugging_opts.cross_lang_lto.enabled() { apply_target_cpu_attr(cx, llfn); } let features = llvm_target_features(cx.tcx.sess) .map(|s| s.to_string()) .chain( codegen_fn_attrs.target_features .iter() .map(|f| { let feature = &*f.as_str(); format!("+{}", llvm_util::to_llvm_feature(cx.tcx.sess, feature)) }) ) .collect::>() .join(","); if !features.is_empty() { let val = CString::new(features).unwrap(); llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("target-features"), &val); } // Note that currently the `wasm-import-module` doesn't do anything, but // eventually LLVM 7 should read this and ferry the appropriate import // module to the output file. if let Some(id) = id { if cx.tcx.sess.target.target.arch == "wasm32" { if let Some(module) = wasm_import_module(cx.tcx, id) { llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("wasm-import-module"), &module, ); } } } } pub fn provide(providers: &mut Providers) { providers.target_features_whitelist = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); if tcx.sess.opts.actually_rustdoc { // rustdoc needs to be able to document functions that use all the features, so // whitelist them all Lrc::new(llvm_util::all_known_features() .map(|(a, b)| (a.to_string(), b.map(|s| s.to_string()))) .collect()) } else { Lrc::new(llvm_util::target_feature_whitelist(tcx.sess) .iter() .map(|&(a, b)| (a.to_string(), b.map(|s| s.to_string()))) .collect()) } }; provide_extern(providers); } pub fn provide_extern(providers: &mut Providers) { providers.wasm_import_module_map = |tcx, cnum| { // Build up a map from DefId to a `NativeLibrary` structure, where // `NativeLibrary` internally contains information about // `#[link(wasm_import_module = "...")]` for example. let native_libs = tcx.native_libraries(cnum); let def_id_to_native_lib = native_libs.iter().filter_map(|lib| if let Some(id) = lib.foreign_module { Some((id, lib)) } else { None } ).collect::>(); let mut ret = FxHashMap(); for lib in tcx.foreign_modules(cnum).iter() { let module = def_id_to_native_lib .get(&lib.def_id) .and_then(|s| s.wasm_import_module); let module = match module { Some(s) => s, None => continue, }; ret.extend(lib.foreign_items.iter().map(|id| { assert_eq!(id.krate, cnum); (*id, module.to_string()) })); } Lrc::new(ret) }; } fn wasm_import_module(tcx: TyCtxt, id: DefId) -> Option { tcx.wasm_import_module_map(id.krate) .get(&id) .map(|s| CString::new(&s[..]).unwrap()) }