use crate::attributes; use crate::back::bytecode; use crate::back::lto::ThinBuffer; use crate::base; use crate::common; use crate::consts; use crate::context::{get_reloc_model, is_pie_binary}; use crate::llvm::{self, DiagnosticInfo, PassManager, SMDiagnostic}; use crate::llvm_util; use crate::type_::Type; use crate::LlvmCodegenBackend; use crate::ModuleLlvm; use log::debug; use rustc::bug; use rustc::session::config::{self, Lto, OutputType, Passes, Sanitizer, SwitchWithOptPath}; use rustc::session::Session; use rustc::ty::TyCtxt; use rustc_codegen_ssa::back::write::{run_assembler, CodegenContext, ModuleConfig}; use rustc_codegen_ssa::traits::*; use rustc_codegen_ssa::{CompiledModule, ModuleCodegen, RLIB_BYTECODE_EXTENSION}; use rustc_data_structures::small_c_str::SmallCStr; use rustc_errors::{FatalError, Handler}; use rustc_fs_util::{link_or_copy, path_to_c_string}; use rustc_hir::def_id::LOCAL_CRATE; use libc::{c_char, c_int, c_uint, c_void, size_t}; use std::ffi::CString; use std::fs; use std::io::{self, Write}; use std::path::{Path, PathBuf}; use std::slice; use std::str; use std::sync::Arc; pub const RELOC_MODEL_ARGS: [(&str, llvm::RelocMode); 7] = [ ("pic", llvm::RelocMode::PIC), ("static", llvm::RelocMode::Static), ("default", llvm::RelocMode::Default), ("dynamic-no-pic", llvm::RelocMode::DynamicNoPic), ("ropi", llvm::RelocMode::ROPI), ("rwpi", llvm::RelocMode::RWPI), ("ropi-rwpi", llvm::RelocMode::ROPI_RWPI), ]; pub const CODE_GEN_MODEL_ARGS: &[(&str, llvm::CodeModel)] = &[ ("small", llvm::CodeModel::Small), ("kernel", llvm::CodeModel::Kernel), ("medium", llvm::CodeModel::Medium), ("large", llvm::CodeModel::Large), ]; pub const TLS_MODEL_ARGS: [(&str, llvm::ThreadLocalMode); 4] = [ ("global-dynamic", llvm::ThreadLocalMode::GeneralDynamic), ("local-dynamic", llvm::ThreadLocalMode::LocalDynamic), ("initial-exec", llvm::ThreadLocalMode::InitialExec), ("local-exec", llvm::ThreadLocalMode::LocalExec), ]; pub fn llvm_err(handler: &rustc_errors::Handler, msg: &str) -> FatalError { match llvm::last_error() { Some(err) => handler.fatal(&format!("{}: {}", msg, err)), None => handler.fatal(&msg), } } pub fn write_output_file( handler: &rustc_errors::Handler, target: &'ll llvm::TargetMachine, pm: &llvm::PassManager<'ll>, m: &'ll llvm::Module, output: &Path, file_type: llvm::FileType, ) -> Result<(), FatalError> { unsafe { let output_c = path_to_c_string(output); let result = llvm::LLVMRustWriteOutputFile(target, pm, m, output_c.as_ptr(), file_type); result.into_result().map_err(|()| { let msg = format!("could not write output to {}", output.display()); llvm_err(handler, &msg) }) } } pub fn create_informational_target_machine( sess: &Session, find_features: bool, ) -> &'static mut llvm::TargetMachine { target_machine_factory(sess, config::OptLevel::No, find_features)() .unwrap_or_else(|err| llvm_err(sess.diagnostic(), &err).raise()) } pub fn create_target_machine( tcx: TyCtxt<'_>, find_features: bool, ) -> &'static mut llvm::TargetMachine { target_machine_factory(&tcx.sess, tcx.backend_optimization_level(LOCAL_CRATE), find_features)() .unwrap_or_else(|err| llvm_err(tcx.sess.diagnostic(), &err).raise()) } pub fn to_llvm_opt_settings( cfg: config::OptLevel, ) -> (llvm::CodeGenOptLevel, llvm::CodeGenOptSize) { use self::config::OptLevel::*; match cfg { No => (llvm::CodeGenOptLevel::None, llvm::CodeGenOptSizeNone), Less => (llvm::CodeGenOptLevel::Less, llvm::CodeGenOptSizeNone), Default => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeNone), Aggressive => (llvm::CodeGenOptLevel::Aggressive, llvm::CodeGenOptSizeNone), Size => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeDefault), SizeMin => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeAggressive), } } // If find_features is true this won't access `sess.crate_types` by assuming // that `is_pie_binary` is false. When we discover LLVM target features // `sess.crate_types` is uninitialized so we cannot access it. pub fn target_machine_factory( sess: &Session, optlvl: config::OptLevel, find_features: bool, ) -> Arc Result<&'static mut llvm::TargetMachine, String> + Send + Sync> { let reloc_model = get_reloc_model(sess); let (opt_level, _) = to_llvm_opt_settings(optlvl); let use_softfp = sess.opts.cg.soft_float; let ffunction_sections = sess.target.target.options.function_sections; let fdata_sections = ffunction_sections; let code_model_arg = sess.opts.cg.code_model.as_ref().or(sess.target.target.options.code_model.as_ref()); let code_model = match code_model_arg { Some(s) => match CODE_GEN_MODEL_ARGS.iter().find(|arg| arg.0 == s) { Some(x) => x.1, _ => { sess.err(&format!("{:?} is not a valid code model", code_model_arg)); sess.abort_if_errors(); bug!(); } }, None => llvm::CodeModel::None, }; let features = attributes::llvm_target_features(sess).collect::>(); let mut singlethread = sess.target.target.options.singlethread; // On the wasm target once the `atomics` feature is enabled that means that // we're no longer single-threaded, or otherwise we don't want LLVM to // lower atomic operations to single-threaded operations. if singlethread && sess.target.target.llvm_target.contains("wasm32") && features.iter().any(|s| *s == "+atomics") { singlethread = false; } let triple = SmallCStr::new(&sess.target.target.llvm_target); let cpu = SmallCStr::new(llvm_util::target_cpu(sess)); let features = features.join(","); let features = CString::new(features).unwrap(); let abi = SmallCStr::new(&sess.target.target.options.llvm_abiname); let is_pie_binary = !find_features && is_pie_binary(sess); let trap_unreachable = sess.target.target.options.trap_unreachable; let emit_stack_size_section = sess.opts.debugging_opts.emit_stack_sizes; let asm_comments = sess.asm_comments(); let relax_elf_relocations = sess.target.target.options.relax_elf_relocations; Arc::new(move || { let tm = unsafe { llvm::LLVMRustCreateTargetMachine( triple.as_ptr(), cpu.as_ptr(), features.as_ptr(), abi.as_ptr(), code_model, reloc_model, opt_level, use_softfp, is_pie_binary, ffunction_sections, fdata_sections, trap_unreachable, singlethread, asm_comments, emit_stack_size_section, relax_elf_relocations, ) }; tm.ok_or_else(|| { format!("Could not create LLVM TargetMachine for triple: {}", triple.to_str().unwrap()) }) }) } pub(crate) fn save_temp_bitcode( cgcx: &CodegenContext, module: &ModuleCodegen, name: &str, ) { if !cgcx.save_temps { return; } unsafe { let ext = format!("{}.bc", name); let cgu = Some(&module.name[..]); let path = cgcx.output_filenames.temp_path_ext(&ext, cgu); let cstr = path_to_c_string(&path); let llmod = module.module_llvm.llmod(); llvm::LLVMWriteBitcodeToFile(llmod, cstr.as_ptr()); } } pub struct DiagnosticHandlers<'a> { data: *mut (&'a CodegenContext, &'a Handler), llcx: &'a llvm::Context, } impl<'a> DiagnosticHandlers<'a> { pub fn new( cgcx: &'a CodegenContext, handler: &'a Handler, llcx: &'a llvm::Context, ) -> Self { let data = Box::into_raw(Box::new((cgcx, handler))); unsafe { llvm::LLVMRustSetInlineAsmDiagnosticHandler(llcx, inline_asm_handler, data.cast()); llvm::LLVMContextSetDiagnosticHandler(llcx, diagnostic_handler, data.cast()); } DiagnosticHandlers { data, llcx } } } impl<'a> Drop for DiagnosticHandlers<'a> { fn drop(&mut self) { use std::ptr::null_mut; unsafe { llvm::LLVMRustSetInlineAsmDiagnosticHandler(self.llcx, inline_asm_handler, null_mut()); llvm::LLVMContextSetDiagnosticHandler(self.llcx, diagnostic_handler, null_mut()); drop(Box::from_raw(self.data)); } } } unsafe extern "C" fn report_inline_asm( cgcx: &CodegenContext, msg: &str, cookie: c_uint, ) { cgcx.diag_emitter.inline_asm_error(cookie as u32, msg.to_owned()); } unsafe extern "C" fn inline_asm_handler(diag: &SMDiagnostic, user: *const c_void, cookie: c_uint) { if user.is_null() { return; } let (cgcx, _) = *(user as *const (&CodegenContext, &Handler)); let msg = llvm::build_string(|s| llvm::LLVMRustWriteSMDiagnosticToString(diag, s)) .expect("non-UTF8 SMDiagnostic"); report_inline_asm(cgcx, &msg, cookie); } unsafe extern "C" fn diagnostic_handler(info: &DiagnosticInfo, user: *mut c_void) { if user.is_null() { return; } let (cgcx, diag_handler) = *(user as *const (&CodegenContext, &Handler)); match llvm::diagnostic::Diagnostic::unpack(info) { llvm::diagnostic::InlineAsm(inline) => { report_inline_asm(cgcx, &llvm::twine_to_string(inline.message), inline.cookie); } llvm::diagnostic::Optimization(opt) => { let enabled = match cgcx.remark { Passes::All => true, Passes::Some(ref v) => v.iter().any(|s| *s == opt.pass_name), }; if enabled { diag_handler.note_without_error(&format!( "optimization {} for {} at {}:{}:{}: {}", opt.kind.describe(), opt.pass_name, opt.filename, opt.line, opt.column, opt.message )); } } llvm::diagnostic::PGO(diagnostic_ref) | llvm::diagnostic::Linker(diagnostic_ref) => { let msg = llvm::build_string(|s| { llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s) }) .expect("non-UTF8 diagnostic"); diag_handler.warn(&msg); } llvm::diagnostic::UnknownDiagnostic(..) => {} } } // Unsafe due to LLVM calls. pub(crate) unsafe fn optimize( cgcx: &CodegenContext, diag_handler: &Handler, module: &ModuleCodegen, config: &ModuleConfig, ) -> Result<(), FatalError> { let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_optimize", &module.name[..]); let llmod = module.module_llvm.llmod(); let llcx = &*module.module_llvm.llcx; let tm = &*module.module_llvm.tm; let _handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx); let module_name = module.name.clone(); let module_name = Some(&module_name[..]); if config.emit_no_opt_bc { let out = cgcx.output_filenames.temp_path_ext("no-opt.bc", module_name); let out = path_to_c_string(&out); llvm::LLVMWriteBitcodeToFile(llmod, out.as_ptr()); } if let Some(opt_level) = config.opt_level { // Create the two optimizing pass managers. These mirror what clang // does, and are by populated by LLVM's default PassManagerBuilder. // Each manager has a different set of passes, but they also share // some common passes. let fpm = llvm::LLVMCreateFunctionPassManagerForModule(llmod); let mpm = llvm::LLVMCreatePassManager(); { let find_pass = |pass_name: &str| { let pass_name = SmallCStr::new(pass_name); llvm::LLVMRustFindAndCreatePass(pass_name.as_ptr()) }; if config.verify_llvm_ir { // Verification should run as the very first pass. llvm::LLVMRustAddPass(fpm, find_pass("verify").unwrap()); } let mut extra_passes = Vec::new(); let mut have_name_anon_globals_pass = false; for pass_name in &config.passes { if pass_name == "lint" { // Linting should also be performed early, directly on the generated IR. llvm::LLVMRustAddPass(fpm, find_pass("lint").unwrap()); continue; } if let Some(pass) = find_pass(pass_name) { extra_passes.push(pass); } else { diag_handler.warn(&format!("unknown pass `{}`, ignoring", pass_name)); } if pass_name == "name-anon-globals" { have_name_anon_globals_pass = true; } } add_sanitizer_passes(config, &mut extra_passes); // Some options cause LLVM bitcode to be emitted, which uses ThinLTOBuffers, so we need // to make sure we run LLVM's NameAnonGlobals pass when emitting bitcode; otherwise // we'll get errors in LLVM. let using_thin_buffers = config.bitcode_needed(); if !config.no_prepopulate_passes { llvm::LLVMAddAnalysisPasses(tm, fpm); llvm::LLVMAddAnalysisPasses(tm, mpm); let opt_level = to_llvm_opt_settings(opt_level).0; let prepare_for_thin_lto = cgcx.lto == Lto::Thin || cgcx.lto == Lto::ThinLocal || (cgcx.lto != Lto::Fat && cgcx.opts.cg.linker_plugin_lto.enabled()); with_llvm_pmb(llmod, &config, opt_level, prepare_for_thin_lto, &mut |b| { llvm::LLVMRustAddLastExtensionPasses( b, extra_passes.as_ptr(), extra_passes.len() as size_t, ); llvm::LLVMPassManagerBuilderPopulateFunctionPassManager(b, fpm); llvm::LLVMPassManagerBuilderPopulateModulePassManager(b, mpm); }); have_name_anon_globals_pass = have_name_anon_globals_pass || prepare_for_thin_lto; if using_thin_buffers && !prepare_for_thin_lto { llvm::LLVMRustAddPass(mpm, find_pass("name-anon-globals").unwrap()); have_name_anon_globals_pass = true; } } else { // If we don't use the standard pipeline, directly populate the MPM // with the extra passes. for pass in extra_passes { llvm::LLVMRustAddPass(mpm, pass); } } if using_thin_buffers && !have_name_anon_globals_pass { // As described above, this will probably cause an error in LLVM if config.no_prepopulate_passes { diag_handler.err( "The current compilation is going to use thin LTO buffers \ without running LLVM's NameAnonGlobals pass. \ This will likely cause errors in LLVM. Consider adding \ -C passes=name-anon-globals to the compiler command line.", ); } else { bug!( "We are using thin LTO buffers without running the NameAnonGlobals pass. \ This will likely cause errors in LLVM and should never happen." ); } } } diag_handler.abort_if_errors(); // Finally, run the actual optimization passes { let _timer = cgcx.prof.extra_verbose_generic_activity( "LLVM_module_optimize_function_passes", &module.name[..], ); llvm::LLVMRustRunFunctionPassManager(fpm, llmod); } { let _timer = cgcx.prof.extra_verbose_generic_activity( "LLVM_module_optimize_module_passes", &module.name[..], ); llvm::LLVMRunPassManager(mpm, llmod); } // Deallocate managers that we're now done with llvm::LLVMDisposePassManager(fpm); llvm::LLVMDisposePassManager(mpm); } Ok(()) } unsafe fn add_sanitizer_passes(config: &ModuleConfig, passes: &mut Vec<&'static mut llvm::Pass>) { let sanitizer = match &config.sanitizer { None => return, Some(s) => s, }; let recover = config.sanitizer_recover.contains(sanitizer); match sanitizer { Sanitizer::Address => { passes.push(llvm::LLVMRustCreateAddressSanitizerFunctionPass(recover)); passes.push(llvm::LLVMRustCreateModuleAddressSanitizerPass(recover)); } Sanitizer::Memory => { let track_origins = config.sanitizer_memory_track_origins as c_int; passes.push(llvm::LLVMRustCreateMemorySanitizerPass(track_origins, recover)); } Sanitizer::Thread => { passes.push(llvm::LLVMRustCreateThreadSanitizerPass()); } Sanitizer::Leak => {} } } pub(crate) unsafe fn codegen( cgcx: &CodegenContext, diag_handler: &Handler, module: ModuleCodegen, config: &ModuleConfig, ) -> Result { let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_codegen", &module.name[..]); { let llmod = module.module_llvm.llmod(); let llcx = &*module.module_llvm.llcx; let tm = &*module.module_llvm.tm; let module_name = module.name.clone(); let module_name = Some(&module_name[..]); let handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx); if cgcx.msvc_imps_needed { create_msvc_imps(cgcx, llcx, llmod); } // A codegen-specific pass manager is used to generate object // files for an LLVM module. // // Apparently each of these pass managers is a one-shot kind of // thing, so we create a new one for each type of output. The // pass manager passed to the closure should be ensured to not // escape the closure itself, and the manager should only be // used once. unsafe fn with_codegen<'ll, F, R>( tm: &'ll llvm::TargetMachine, llmod: &'ll llvm::Module, no_builtins: bool, f: F, ) -> R where F: FnOnce(&'ll mut PassManager<'ll>) -> R, { let cpm = llvm::LLVMCreatePassManager(); llvm::LLVMAddAnalysisPasses(tm, cpm); llvm::LLVMRustAddLibraryInfo(cpm, llmod, no_builtins); f(cpm) } // If we don't have the integrated assembler, then we need to emit asm // from LLVM and use `gcc` to create the object file. let asm_to_obj = config.emit_obj && config.no_integrated_as; // Change what we write and cleanup based on whether obj files are // just llvm bitcode. In that case write bitcode, and possibly // delete the bitcode if it wasn't requested. Don't generate the // machine code, instead copy the .o file from the .bc let write_bc = config.emit_bc || config.obj_is_bitcode; let rm_bc = !config.emit_bc && config.obj_is_bitcode; let write_obj = config.emit_obj && !config.obj_is_bitcode && !asm_to_obj; let copy_bc_to_obj = config.emit_obj && config.obj_is_bitcode; let bc_out = cgcx.output_filenames.temp_path(OutputType::Bitcode, module_name); let obj_out = cgcx.output_filenames.temp_path(OutputType::Object, module_name); if write_bc || config.emit_bc_compressed || config.embed_bitcode { let _timer = cgcx .prof .generic_activity_with_arg("LLVM_module_codegen_make_bitcode", &module.name[..]); let thin = ThinBuffer::new(llmod); let data = thin.data(); if write_bc { let _timer = cgcx.prof.generic_activity_with_arg( "LLVM_module_codegen_emit_bitcode", &module.name[..], ); if let Err(e) = fs::write(&bc_out, data) { let msg = format!("failed to write bytecode to {}: {}", bc_out.display(), e); diag_handler.err(&msg); } } if config.embed_bitcode { let _timer = cgcx.prof.generic_activity_with_arg( "LLVM_module_codegen_embed_bitcode", &module.name[..], ); embed_bitcode(cgcx, llcx, llmod, Some(data)); } if config.emit_bc_compressed { let _timer = cgcx.prof.generic_activity_with_arg( "LLVM_module_codegen_emit_compressed_bitcode", &module.name[..], ); let dst = bc_out.with_extension(RLIB_BYTECODE_EXTENSION); let data = bytecode::encode(&module.name, data); if let Err(e) = fs::write(&dst, data) { let msg = format!("failed to write bytecode to {}: {}", dst.display(), e); diag_handler.err(&msg); } } } else if config.embed_bitcode_marker { embed_bitcode(cgcx, llcx, llmod, None); } { if config.emit_ir { let _timer = cgcx .prof .generic_activity_with_arg("LLVM_module_codegen_emit_ir", &module.name[..]); let out = cgcx.output_filenames.temp_path(OutputType::LlvmAssembly, module_name); let out_c = path_to_c_string(&out); extern "C" fn demangle_callback( input_ptr: *const c_char, input_len: size_t, output_ptr: *mut c_char, output_len: size_t, ) -> size_t { let input = unsafe { slice::from_raw_parts(input_ptr as *const u8, input_len as usize) }; let input = match str::from_utf8(input) { Ok(s) => s, Err(_) => return 0, }; let output = unsafe { slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize) }; let mut cursor = io::Cursor::new(output); let demangled = match rustc_demangle::try_demangle(input) { Ok(d) => d, Err(_) => return 0, }; if let Err(_) = write!(cursor, "{:#}", demangled) { // Possible only if provided buffer is not big enough return 0; } cursor.position() as size_t } let result = llvm::LLVMRustPrintModule(llmod, out_c.as_ptr(), demangle_callback); result.into_result().map_err(|()| { let msg = format!("failed to write LLVM IR to {}", out.display()); llvm_err(diag_handler, &msg) })?; } if config.emit_asm || asm_to_obj { let _timer = cgcx .prof .generic_activity_with_arg("LLVM_module_codegen_emit_asm", &module.name[..]); let path = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name); // We can't use the same module for asm and binary output, because that triggers // various errors like invalid IR or broken binaries, so we might have to clone the // module to produce the asm output let llmod = if config.emit_obj { llvm::LLVMCloneModule(llmod) } else { llmod }; with_codegen(tm, llmod, config.no_builtins, |cpm| { write_output_file( diag_handler, tm, cpm, llmod, &path, llvm::FileType::AssemblyFile, ) })?; } if write_obj { let _timer = cgcx .prof .generic_activity_with_arg("LLVM_module_codegen_emit_obj", &module.name[..]); with_codegen(tm, llmod, config.no_builtins, |cpm| { write_output_file( diag_handler, tm, cpm, llmod, &obj_out, llvm::FileType::ObjectFile, ) })?; } else if asm_to_obj { let _timer = cgcx .prof .generic_activity_with_arg("LLVM_module_codegen_asm_to_obj", &module.name[..]); let assembly = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name); run_assembler(cgcx, diag_handler, &assembly, &obj_out); if !config.emit_asm && !cgcx.save_temps { drop(fs::remove_file(&assembly)); } } } if copy_bc_to_obj { debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out); if let Err(e) = link_or_copy(&bc_out, &obj_out) { diag_handler.err(&format!("failed to copy bitcode to object file: {}", e)); } } if rm_bc { debug!("removing_bitcode {:?}", bc_out); if let Err(e) = fs::remove_file(&bc_out) { diag_handler.err(&format!("failed to remove bitcode: {}", e)); } } drop(handlers); } Ok(module.into_compiled_module( config.emit_obj, config.emit_bc, config.emit_bc_compressed, &cgcx.output_filenames, )) } /// Embed the bitcode of an LLVM module in the LLVM module itself. /// /// This is done primarily for iOS where it appears to be standard to compile C /// code at least with `-fembed-bitcode` which creates two sections in the /// executable: /// /// * __LLVM,__bitcode /// * __LLVM,__cmdline /// /// It appears *both* of these sections are necessary to get the linker to /// recognize what's going on. For us though we just always throw in an empty /// cmdline section. /// /// Furthermore debug/O1 builds don't actually embed bitcode but rather just /// embed an empty section. /// /// Basically all of this is us attempting to follow in the footsteps of clang /// on iOS. See #35968 for lots more info. unsafe fn embed_bitcode( cgcx: &CodegenContext, llcx: &llvm::Context, llmod: &llvm::Module, bitcode: Option<&[u8]>, ) { let llconst = common::bytes_in_context(llcx, bitcode.unwrap_or(&[])); let llglobal = llvm::LLVMAddGlobal( llmod, common::val_ty(llconst), "rustc.embedded.module\0".as_ptr().cast(), ); llvm::LLVMSetInitializer(llglobal, llconst); let is_apple = cgcx.opts.target_triple.triple().contains("-ios") || cgcx.opts.target_triple.triple().contains("-darwin"); let section = if is_apple { "__LLVM,__bitcode\0" } else { ".llvmbc\0" }; llvm::LLVMSetSection(llglobal, section.as_ptr().cast()); llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage); llvm::LLVMSetGlobalConstant(llglobal, llvm::True); let llconst = common::bytes_in_context(llcx, &[]); let llglobal = llvm::LLVMAddGlobal( llmod, common::val_ty(llconst), "rustc.embedded.cmdline\0".as_ptr().cast(), ); llvm::LLVMSetInitializer(llglobal, llconst); let section = if is_apple { "__LLVM,__cmdline\0" } else { ".llvmcmd\0" }; llvm::LLVMSetSection(llglobal, section.as_ptr().cast()); llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage); } pub unsafe fn with_llvm_pmb( llmod: &llvm::Module, config: &ModuleConfig, opt_level: llvm::CodeGenOptLevel, prepare_for_thin_lto: bool, f: &mut dyn FnMut(&llvm::PassManagerBuilder), ) { use std::ptr; // Create the PassManagerBuilder for LLVM. We configure it with // reasonable defaults and prepare it to actually populate the pass // manager. let builder = llvm::LLVMPassManagerBuilderCreate(); let opt_size = config.opt_size.map(|x| to_llvm_opt_settings(x).1).unwrap_or(llvm::CodeGenOptSizeNone); let inline_threshold = config.inline_threshold; let pgo_gen_path = match config.pgo_gen { SwitchWithOptPath::Enabled(ref opt_dir_path) => { let path = if let Some(dir_path) = opt_dir_path { dir_path.join("default_%m.profraw") } else { PathBuf::from("default_%m.profraw") }; Some(CString::new(format!("{}", path.display())).unwrap()) } SwitchWithOptPath::Disabled => None, }; let pgo_use_path = config .pgo_use .as_ref() .map(|path_buf| CString::new(path_buf.to_string_lossy().as_bytes()).unwrap()); llvm::LLVMRustConfigurePassManagerBuilder( builder, opt_level, config.merge_functions, config.vectorize_slp, config.vectorize_loop, prepare_for_thin_lto, pgo_gen_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()), pgo_use_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()), ); llvm::LLVMPassManagerBuilderSetSizeLevel(builder, opt_size as u32); if opt_size != llvm::CodeGenOptSizeNone { llvm::LLVMPassManagerBuilderSetDisableUnrollLoops(builder, 1); } llvm::LLVMRustAddBuilderLibraryInfo(builder, llmod, config.no_builtins); // Here we match what clang does (kinda). For O0 we only inline // always-inline functions (but don't add lifetime intrinsics), at O1 we // inline with lifetime intrinsics, and O2+ we add an inliner with a // thresholds copied from clang. match (opt_level, opt_size, inline_threshold) { (.., Some(t)) => { llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, t as u32); } (llvm::CodeGenOptLevel::Aggressive, ..) => { llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 275); } (_, llvm::CodeGenOptSizeDefault, _) => { llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 75); } (_, llvm::CodeGenOptSizeAggressive, _) => { llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 25); } (llvm::CodeGenOptLevel::None, ..) => { llvm::LLVMRustAddAlwaysInlinePass(builder, false); } (llvm::CodeGenOptLevel::Less, ..) => { llvm::LLVMRustAddAlwaysInlinePass(builder, true); } (llvm::CodeGenOptLevel::Default, ..) => { llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 225); } (llvm::CodeGenOptLevel::Other, ..) => bug!("CodeGenOptLevel::Other selected"), } f(builder); llvm::LLVMPassManagerBuilderDispose(builder); } // Create a `__imp_ = &symbol` global for every public static `symbol`. // This is required to satisfy `dllimport` references to static data in .rlibs // when using MSVC linker. We do this only for data, as linker can fix up // code references on its own. // See #26591, #27438 fn create_msvc_imps( cgcx: &CodegenContext, llcx: &llvm::Context, llmod: &llvm::Module, ) { if !cgcx.msvc_imps_needed { return; } // The x86 ABI seems to require that leading underscores are added to symbol // names, so we need an extra underscore on x86. There's also a leading // '\x01' here which disables LLVM's symbol mangling (e.g., no extra // underscores added in front). let prefix = if cgcx.target_arch == "x86" { "\x01__imp__" } else { "\x01__imp_" }; unsafe { let i8p_ty = Type::i8p_llcx(llcx); let globals = base::iter_globals(llmod) .filter(|&val| { llvm::LLVMRustGetLinkage(val) == llvm::Linkage::ExternalLinkage && llvm::LLVMIsDeclaration(val) == 0 }) .filter_map(|val| { // Exclude some symbols that we know are not Rust symbols. let name = llvm::get_value_name(val); if ignored(name) { None } else { Some((val, name)) } }) .map(move |(val, name)| { let mut imp_name = prefix.as_bytes().to_vec(); imp_name.extend(name); let imp_name = CString::new(imp_name).unwrap(); (imp_name, val) }) .collect::>(); for (imp_name, val) in globals { let imp = llvm::LLVMAddGlobal(llmod, i8p_ty, imp_name.as_ptr().cast()); llvm::LLVMSetInitializer(imp, consts::ptrcast(val, i8p_ty)); llvm::LLVMRustSetLinkage(imp, llvm::Linkage::ExternalLinkage); } } // Use this function to exclude certain symbols from `__imp` generation. fn ignored(symbol_name: &[u8]) -> bool { // These are symbols generated by LLVM's profiling instrumentation symbol_name.starts_with(b"__llvm_profile_") } }