//! Defines the various compiler queries. //! //! For more information on the query system, see //! ["Queries: demand-driven compilation"](https://rustc-dev-guide.rust-lang.org/query.html). //! This chapter includes instructions for adding new queries. #![allow(unused_parens)] use std::mem; use std::path::PathBuf; use std::sync::Arc; use rustc_arena::TypedArena; use rustc_ast::expand::StrippedCfgItem; use rustc_ast::expand::allocator::AllocatorKind; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::{FxIndexMap, FxIndexSet}; use rustc_data_structures::sorted_map::SortedMap; use rustc_data_structures::steal::Steal; use rustc_data_structures::svh::Svh; use rustc_data_structures::unord::{UnordMap, UnordSet}; use rustc_errors::ErrorGuaranteed; use rustc_hir::def::{DefKind, DocLinkResMap}; use rustc_hir::def_id::{ CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap, LocalDefIdSet, LocalModDefId, }; use rustc_hir::lang_items::{LangItem, LanguageItems}; use rustc_hir::{Crate, ItemLocalId, ItemLocalMap, TraitCandidate}; use rustc_index::IndexVec; use rustc_lint_defs::LintId; use rustc_macros::rustc_queries; use rustc_query_system::ich::StableHashingContext; use rustc_query_system::query::{QueryCache, QueryMode, QueryState, try_get_cached}; use rustc_session::Limits; use rustc_session::config::{EntryFnType, OptLevel, OutputFilenames, SymbolManglingVersion}; use rustc_session::cstore::{ CrateDepKind, CrateSource, ExternCrate, ForeignModule, LinkagePreference, NativeLib, }; use rustc_session::lint::LintExpectationId; use rustc_span::def_id::LOCAL_CRATE; use rustc_span::source_map::Spanned; use rustc_span::{DUMMY_SP, Span, Symbol}; use rustc_target::spec::PanicStrategy; use {rustc_abi as abi, rustc_ast as ast, rustc_attr_parsing as attr, rustc_hir as hir}; use crate::infer::canonical::{self, Canonical}; use crate::lint::LintExpectation; use crate::metadata::ModChild; use crate::middle::codegen_fn_attrs::CodegenFnAttrs; use crate::middle::debugger_visualizer::DebuggerVisualizerFile; use crate::middle::exported_symbols::{ExportedSymbol, SymbolExportInfo}; use crate::middle::lib_features::LibFeatures; use crate::middle::privacy::EffectiveVisibilities; use crate::middle::resolve_bound_vars::{ObjectLifetimeDefault, ResolveBoundVars, ResolvedArg}; use crate::middle::stability::{self, DeprecationEntry}; use crate::mir::interpret::{ EvalStaticInitializerRawResult, EvalToAllocationRawResult, EvalToConstValueResult, EvalToValTreeResult, GlobalId, LitToConstInput, }; use crate::mir::mono::{CodegenUnit, CollectionMode, MonoItem, MonoItemPartitions}; use crate::query::erase::{Erase, erase, restore}; use crate::query::plumbing::{ CyclePlaceholder, DynamicQuery, query_ensure, query_ensure_error_guaranteed, query_get_at, }; use crate::traits::query::{ CanonicalAliasGoal, CanonicalDropckOutlivesGoal, CanonicalImpliedOutlivesBoundsGoal, CanonicalPredicateGoal, CanonicalTyGoal, CanonicalTypeOpAscribeUserTypeGoal, CanonicalTypeOpNormalizeGoal, CanonicalTypeOpProvePredicateGoal, DropckConstraint, DropckOutlivesResult, MethodAutoderefStepsResult, NoSolution, NormalizationResult, OutlivesBound, }; use crate::traits::{ CodegenObligationError, DynCompatibilityViolation, EvaluationResult, ImplSource, ObligationCause, OverflowError, WellFormedLoc, specialization_graph, }; use crate::ty::fast_reject::SimplifiedType; use crate::ty::layout::ValidityRequirement; use crate::ty::print::{PrintTraitRefExt, describe_as_module}; use crate::ty::util::AlwaysRequiresDrop; use crate::ty::{ self, CrateInherentImpls, GenericArg, GenericArgsRef, PseudoCanonicalInput, Ty, TyCtxt, TyCtxtFeed, }; use crate::{dep_graph, mir, thir}; mod arena_cached; pub mod erase; mod keys; pub use keys::{AsLocalKey, Key, LocalCrate}; pub mod on_disk_cache; #[macro_use] pub mod plumbing; pub use plumbing::{IntoQueryParam, TyCtxtAt, TyCtxtEnsureDone, TyCtxtEnsureOk}; // Each of these queries corresponds to a function pointer field in the // `Providers` struct for requesting a value of that type, and a method // on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way // which memoizes and does dep-graph tracking, wrapping around the actual // `Providers` that the driver creates (using several `rustc_*` crates). // // The result type of each query must implement `Clone`, and additionally // `ty::query::values::Value`, which produces an appropriate placeholder // (error) value if the query resulted in a query cycle. // Queries marked with `fatal_cycle` do not need the latter implementation, // as they will raise an fatal error on query cycles instead. rustc_queries! { /// This exists purely for testing the interactions between delayed bugs and incremental. query trigger_delayed_bug(key: DefId) { desc { "triggering a delayed bug for testing incremental" } } /// Collects the list of all tools registered using `#![register_tool]`. query registered_tools(_: ()) -> &'tcx ty::RegisteredTools { arena_cache desc { "compute registered tools for crate" } } query early_lint_checks(_: ()) { desc { "perform lints prior to AST lowering" } } query resolutions(_: ()) -> &'tcx ty::ResolverGlobalCtxt { no_hash desc { "getting the resolver outputs" } } query resolver_for_lowering_raw(_: ()) -> (&'tcx Steal<(ty::ResolverAstLowering, Arc)>, &'tcx ty::ResolverGlobalCtxt) { eval_always no_hash desc { "getting the resolver for lowering" } } /// Return the span for a definition. /// /// Contrary to `def_span` below, this query returns the full absolute span of the definition. /// This span is meant for dep-tracking rather than diagnostics. It should not be used outside /// of rustc_middle::hir::source_map. query source_span(key: LocalDefId) -> Span { // Accesses untracked data eval_always desc { "getting the source span" } } /// Represents crate as a whole (as distinct from the top-level crate module). /// /// If you call `hir_crate` (e.g., indirectly by calling `tcx.hir_crate()`), /// we will have to assume that any change means that you need to be recompiled. /// This is because the `hir_crate` query gives you access to all other items. /// To avoid this fate, do not call `tcx.hir_crate()`; instead, /// prefer wrappers like [`TyCtxt::hir_visit_all_item_likes_in_crate`]. query hir_crate(key: ()) -> &'tcx Crate<'tcx> { arena_cache eval_always desc { "getting the crate HIR" } } /// All items in the crate. query hir_crate_items(_: ()) -> &'tcx rustc_middle::hir::ModuleItems { arena_cache eval_always desc { "getting HIR crate items" } } /// The items in a module. /// /// This can be conveniently accessed by `tcx.hir_visit_item_likes_in_module`. /// Avoid calling this query directly. query hir_module_items(key: LocalModDefId) -> &'tcx rustc_middle::hir::ModuleItems { arena_cache desc { |tcx| "getting HIR module items in `{}`", tcx.def_path_str(key) } cache_on_disk_if { true } } /// Returns HIR ID for the given `LocalDefId`. query local_def_id_to_hir_id(key: LocalDefId) -> hir::HirId { desc { |tcx| "getting HIR ID of `{}`", tcx.def_path_str(key) } feedable } /// Gives access to the HIR node's parent for the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_owner_parent(key: hir::OwnerId) -> hir::HirId { desc { |tcx| "getting HIR parent of `{}`", tcx.def_path_str(key) } } /// Gives access to the HIR nodes and bodies inside `key` if it's a HIR owner. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query opt_hir_owner_nodes(key: LocalDefId) -> Option<&'tcx hir::OwnerNodes<'tcx>> { desc { |tcx| "getting HIR owner items in `{}`", tcx.def_path_str(key) } feedable } /// Gives access to the HIR attributes inside the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_attrs(key: hir::OwnerId) -> &'tcx hir::AttributeMap<'tcx> { desc { |tcx| "getting HIR owner attributes in `{}`", tcx.def_path_str(key) } feedable } /// Returns the *default* of the const pararameter given by `DefId`. /// /// E.g., given `struct Ty;` this returns `3` for `N`. query const_param_default(param: DefId) -> ty::EarlyBinder<'tcx, ty::Const<'tcx>> { desc { |tcx| "computing the default for const parameter `{}`", tcx.def_path_str(param) } cache_on_disk_if { param.is_local() } separate_provide_extern } /// Returns the *type* of the definition given by `DefId`. /// /// For type aliases (whether eager or lazy) and associated types, this returns /// the underlying aliased type (not the corresponding [alias type]). /// /// For opaque types, this returns and thus reveals the hidden type! If you /// want to detect cycle errors use `type_of_opaque` instead. /// /// To clarify, for type definitions, this does *not* return the "type of a type" /// (aka *kind* or *sort*) in the type-theoretical sense! It merely returns /// the type primarily *associated with* it. /// /// # Panics /// /// This query will panic if the given definition doesn't (and can't /// conceptually) have an (underlying) type. /// /// [alias type]: rustc_middle::ty::AliasTy query type_of(key: DefId) -> ty::EarlyBinder<'tcx, Ty<'tcx>> { desc { |tcx| "{action} `{path}`", action = match tcx.def_kind(key) { DefKind::TyAlias => "expanding type alias", DefKind::TraitAlias => "expanding trait alias", _ => "computing type of", }, path = tcx.def_path_str(key), } cache_on_disk_if { key.is_local() } separate_provide_extern feedable } /// Returns the *hidden type* of the opaque type given by `DefId` unless a cycle occurred. /// /// This is a specialized instance of [`Self::type_of`] that detects query cycles. /// Unless `CyclePlaceholder` needs to be handled separately, call [`Self::type_of`] instead. /// /// # Panics /// /// This query will panic if the given definition is not an opaque type. query type_of_opaque(key: DefId) -> Result>, CyclePlaceholder> { desc { |tcx| "computing type of opaque `{path}`", path = tcx.def_path_str(key), } cycle_stash } /// Returns whether the type alias given by `DefId` is lazy. /// /// I.e., if the type alias expands / ought to expand to a [weak] [alias type] /// instead of the underyling aliased type. /// /// Relevant for features `lazy_type_alias` and `type_alias_impl_trait`. /// /// # Panics /// /// This query *may* panic if the given definition is not a type alias. /// /// [weak]: rustc_middle::ty::Weak /// [alias type]: rustc_middle::ty::AliasTy query type_alias_is_lazy(key: DefId) -> bool { desc { |tcx| "computing whether the type alias `{path}` is lazy", path = tcx.def_path_str(key), } separate_provide_extern } query collect_return_position_impl_trait_in_trait_tys(key: DefId) -> Result<&'tcx DefIdMap>>, ErrorGuaranteed> { desc { "comparing an impl and trait method signature, inferring any hidden `impl Trait` types in the process" } cache_on_disk_if { key.is_local() } separate_provide_extern } query opaque_ty_origin(key: DefId) -> hir::OpaqueTyOrigin { desc { "determine where the opaque originates from" } separate_provide_extern } query unsizing_params_for_adt(key: DefId) -> &'tcx rustc_index::bit_set::DenseBitSet { arena_cache desc { |tcx| "determining what parameters of `{}` can participate in unsizing", tcx.def_path_str(key), } } /// The root query triggering all analysis passes like typeck or borrowck. query analysis(key: ()) { eval_always desc { "running analysis passes on this crate" } } /// This query checks the fulfillment of collected lint expectations. /// All lint emitting queries have to be done before this is executed /// to ensure that all expectations can be fulfilled. /// /// This is an extra query to enable other drivers (like rustdoc) to /// only execute a small subset of the `analysis` query, while allowing /// lints to be expected. In rustc, this query will be executed as part of /// the `analysis` query and doesn't have to be called a second time. /// /// Tools can additionally pass in a tool filter. That will restrict the /// expectations to only trigger for lints starting with the listed tool /// name. This is useful for cases were not all linting code from rustc /// was called. With the default `None` all registered lints will also /// be checked for expectation fulfillment. query check_expectations(key: Option) { eval_always desc { "checking lint expectations (RFC 2383)" } } /// Returns the *generics* of the definition given by `DefId`. query generics_of(key: DefId) -> &'tcx ty::Generics { desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) } arena_cache cache_on_disk_if { key.is_local() } separate_provide_extern feedable } /// Returns the (elaborated) *predicates* of the definition given by `DefId` /// that must be proven true at usage sites (and which can be assumed at definition site). /// /// This is almost always *the* "predicates query" that you want. /// /// **Tip**: You can use `#[rustc_dump_predicates]` on an item to basically print /// the result of this query for use in UI tests or for debugging purposes. query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } feedable } query opaque_types_defined_by( key: LocalDefId ) -> &'tcx ty::List { desc { |tcx| "computing the opaque types defined by `{}`", tcx.def_path_str(key.to_def_id()) } } /// Returns the explicitly user-written *bounds* on the associated or opaque type given by `DefId` /// that must be proven true at definition site (and which can be assumed at usage sites). /// /// For associated types, these must be satisfied for an implementation /// to be well-formed, and for opaque types, these are required to be /// satisfied by the hidden type of the opaque. /// /// Bounds from the parent (e.g. with nested `impl Trait`) are not included. /// /// Syntactially, these are the bounds written on associated types in trait /// definitions, or those after the `impl` keyword for an opaque: /// /// ```ignore (illustrative) /// trait Trait { type X: Bound + 'lt; } /// // ^^^^^^^^^^^ /// fn function() -> impl Debug + Display { /*...*/ } /// // ^^^^^^^^^^^^^^^ /// ``` query explicit_item_bounds(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern feedable } /// Returns the explicitly user-written *bounds* that share the `Self` type of the item. /// /// These are a subset of the [explicit item bounds] that may explicitly be used for things /// like closure signature deduction. /// /// [explicit item bounds]: Self::explicit_item_bounds query explicit_item_self_bounds(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern feedable } /// Returns the (elaborated) *bounds* on the associated or opaque type given by `DefId` /// that must be proven true at definition site (and which can be assumed at usage sites). /// /// Bounds from the parent (e.g. with nested `impl Trait`) are not included. /// /// **Tip**: You can use `#[rustc_dump_item_bounds]` on an item to basically print /// the result of this query for use in UI tests or for debugging purposes. /// /// # Examples /// /// ``` /// trait Trait { type Assoc: Eq + ?Sized; } /// ``` /// /// While [`Self::explicit_item_bounds`] returns `[::Assoc: Eq]` /// here, `item_bounds` returns: /// /// ```text /// [ /// ::Assoc: Eq, /// ::Assoc: PartialEq<::Assoc> /// ] /// ``` query item_bounds(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { desc { |tcx| "elaborating item bounds for `{}`", tcx.def_path_str(key) } } query item_self_bounds(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { desc { |tcx| "elaborating item assumptions for `{}`", tcx.def_path_str(key) } } query item_non_self_bounds(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { desc { |tcx| "elaborating item assumptions for `{}`", tcx.def_path_str(key) } } query impl_super_outlives(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { desc { |tcx| "elaborating supertrait outlives for trait of `{}`", tcx.def_path_str(key) } } /// Look up all native libraries this crate depends on. /// These are assembled from the following places: /// - `extern` blocks (depending on their `link` attributes) /// - the `libs` (`-l`) option query native_libraries(_: CrateNum) -> &'tcx Vec { arena_cache desc { "looking up the native libraries of a linked crate" } separate_provide_extern } query shallow_lint_levels_on(key: hir::OwnerId) -> &'tcx rustc_middle::lint::ShallowLintLevelMap { arena_cache desc { |tcx| "looking up lint levels for `{}`", tcx.def_path_str(key) } } query lint_expectations(_: ()) -> &'tcx Vec<(LintExpectationId, LintExpectation)> { arena_cache desc { "computing `#[expect]`ed lints in this crate" } } query lints_that_dont_need_to_run(_: ()) -> &'tcx FxIndexSet { arena_cache desc { "Computing all lints that are explicitly enabled or with a default level greater than Allow" } } query expn_that_defined(key: DefId) -> rustc_span::ExpnId { desc { |tcx| "getting the expansion that defined `{}`", tcx.def_path_str(key) } separate_provide_extern } query is_panic_runtime(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate is_panic_runtime" } separate_provide_extern } /// Checks whether a type is representable or infinitely sized query representability(_: LocalDefId) -> rustc_middle::ty::Representability { desc { "checking if `{}` is representable", tcx.def_path_str(key) } // infinitely sized types will cause a cycle cycle_delay_bug // we don't want recursive representability calls to be forced with // incremental compilation because, if a cycle occurs, we need the // entire cycle to be in memory for diagnostics anon } /// An implementation detail for the `representability` query query representability_adt_ty(_: Ty<'tcx>) -> rustc_middle::ty::Representability { desc { "checking if `{}` is representable", key } cycle_delay_bug anon } /// Set of param indexes for type params that are in the type's representation query params_in_repr(key: DefId) -> &'tcx rustc_index::bit_set::DenseBitSet { desc { "finding type parameters in the representation" } arena_cache no_hash separate_provide_extern } /// Fetch the THIR for a given body. query thir_body(key: LocalDefId) -> Result<(&'tcx Steal>, thir::ExprId), ErrorGuaranteed> { // Perf tests revealed that hashing THIR is inefficient (see #85729). no_hash desc { |tcx| "building THIR for `{}`", tcx.def_path_str(key) } } /// Set of all the `DefId`s in this crate that have MIR associated with /// them. This includes all the body owners, but also things like struct /// constructors. query mir_keys(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexSet { arena_cache desc { "getting a list of all mir_keys" } } /// Maps DefId's that have an associated `mir::Body` to the result /// of the MIR const-checking pass. This is the set of qualifs in /// the final value of a `const`. query mir_const_qualif(key: DefId) -> mir::ConstQualifs { desc { |tcx| "const checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Build the MIR for a given `DefId` and prepare it for const qualification. /// /// See the [rustc dev guide] for more info. /// /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/construction.html query mir_built(key: LocalDefId) -> &'tcx Steal> { desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key) } feedable } /// Try to build an abstract representation of the given constant. query thir_abstract_const( key: DefId ) -> Result>>, ErrorGuaranteed> { desc { |tcx| "building an abstract representation for `{}`", tcx.def_path_str(key), } separate_provide_extern } query mir_drops_elaborated_and_const_checked(key: LocalDefId) -> &'tcx Steal> { no_hash desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key) } } query mir_for_ctfe( key: DefId ) -> &'tcx mir::Body<'tcx> { desc { |tcx| "caching mir of `{}` for CTFE", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query mir_promoted(key: LocalDefId) -> ( &'tcx Steal>, &'tcx Steal>> ) { no_hash desc { |tcx| "promoting constants in MIR for `{}`", tcx.def_path_str(key) } } query closure_typeinfo(key: LocalDefId) -> ty::ClosureTypeInfo<'tcx> { desc { |tcx| "finding symbols for captures of closure `{}`", tcx.def_path_str(key) } } /// Returns names of captured upvars for closures and coroutines. /// /// Here are some examples: /// - `name__field1__field2` when the upvar is captured by value. /// - `_ref__name__field` when the upvar is captured by reference. /// /// For coroutines this only contains upvars that are shared by all states. query closure_saved_names_of_captured_variables(def_id: DefId) -> &'tcx IndexVec { arena_cache desc { |tcx| "computing debuginfo for closure `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query mir_coroutine_witnesses(key: DefId) -> Option<&'tcx mir::CoroutineLayout<'tcx>> { arena_cache desc { |tcx| "coroutine witness types for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query check_coroutine_obligations(key: LocalDefId) -> Result<(), ErrorGuaranteed> { desc { |tcx| "verify auto trait bounds for coroutine interior type `{}`", tcx.def_path_str(key) } } /// MIR after our optimization passes have run. This is MIR that is ready /// for codegen. This is also the only query that can fetch non-local MIR, at present. query optimized_mir(key: DefId) -> &'tcx mir::Body<'tcx> { desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Checks for the nearest `#[coverage(off)]` or `#[coverage(on)]` on /// this def and any enclosing defs, up to the crate root. /// /// Returns `false` if `#[coverage(off)]` was found, or `true` if /// either `#[coverage(on)]` or no coverage attribute was found. query coverage_attr_on(key: LocalDefId) -> bool { desc { |tcx| "checking for `#[coverage(..)]` on `{}`", tcx.def_path_str(key) } feedable } /// Scans through a function's MIR after MIR optimizations, to prepare the /// information needed by codegen when `-Cinstrument-coverage` is active. /// /// This includes the details of where to insert `llvm.instrprof.increment` /// intrinsics, and the expression tables to be embedded in the function's /// coverage metadata. /// /// FIXME(Zalathar): This query's purpose has drifted a bit and should /// probably be renamed, but that can wait until after the potential /// follow-ups to #136053 have settled down. /// /// Returns `None` for functions that were not instrumented. query coverage_ids_info(key: ty::InstanceKind<'tcx>) -> Option<&'tcx mir::coverage::CoverageIdsInfo> { desc { |tcx| "retrieving coverage IDs info from MIR for `{}`", tcx.def_path_str(key.def_id()) } arena_cache } /// The `DefId` is the `DefId` of the containing MIR body. Promoteds do not have their own /// `DefId`. This function returns all promoteds in the specified body. The body references /// promoteds by the `DefId` and the `mir::Promoted` index. This is necessary, because /// after inlining a body may refer to promoteds from other bodies. In that case you still /// need to use the `DefId` of the original body. query promoted_mir(key: DefId) -> &'tcx IndexVec> { desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Erases regions from `ty` to yield a new type. /// Normally you would just use `tcx.erase_regions(value)`, /// however, which uses this query as a kind of cache. query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> { // This query is not expected to have input -- as a result, it // is not a good candidates for "replay" because it is essentially a // pure function of its input (and hence the expectation is that // no caller would be green **apart** from just these // queries). Making it anonymous avoids hashing the result, which // may save a bit of time. anon desc { "erasing regions from `{}`", ty } } query wasm_import_module_map(_: CrateNum) -> &'tcx DefIdMap { arena_cache desc { "getting wasm import module map" } } /// Returns the explicitly user-written *predicates and bounds* of the trait given by `DefId`. /// /// Traits are unusual, because predicates on associated types are /// converted into bounds on that type for backwards compatibility: /// /// ``` /// trait X where Self::U: Copy { type U; } /// ``` /// /// becomes /// /// ``` /// trait X { type U: Copy; } /// ``` /// /// [`Self::explicit_predicates_of`] and [`Self::explicit_item_bounds`] will /// then take the appropriate subsets of the predicates here. /// /// # Panics /// /// This query will panic if the given definition is not a trait. query trait_explicit_predicates_and_bounds(key: LocalDefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing explicit predicates of trait `{}`", tcx.def_path_str(key) } } /// Returns the explicitly user-written *predicates* of the definition given by `DefId` /// that must be proven true at usage sites (and which can be assumed at definition site). /// /// You should probably use [`Self::predicates_of`] unless you're looking for /// predicates with explicit spans for diagnostics purposes. query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern feedable } /// Returns the *inferred outlives-predicates* of the item given by `DefId`. /// /// E.g., for `struct Foo<'a, T> { x: &'a T }`, this would return `[T: 'a]`. /// /// **Tip**: You can use `#[rustc_outlives]` on an item to basically print the /// result of this query for use in UI tests or for debugging purposes. query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Clause<'tcx>, Span)] { desc { |tcx| "computing inferred outlives-predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern feedable } /// Returns the explicitly user-written *super-predicates* of the trait given by `DefId`. /// /// These predicates are unelaborated and consequently don't contain transitive super-predicates. /// /// This is a subset of the full list of predicates. We store these in a separate map /// because we must evaluate them even during type conversion, often before the full /// predicates are available (note that super-predicates must not be cyclic). query explicit_super_predicates_of(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { desc { |tcx| "computing the super predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// The predicates of the trait that are implied during elaboration. /// /// This is a superset of the super-predicates of the trait, but a subset of the predicates /// of the trait. For regular traits, this includes all super-predicates and their /// associated type bounds. For trait aliases, currently, this includes all of the /// predicates of the trait alias. query explicit_implied_predicates_of(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { desc { |tcx| "computing the implied predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// The Ident is the name of an associated type.The query returns only the subset /// of supertraits that define the given associated type. This is used to avoid /// cycles in resolving type-dependent associated item paths like `T::Item`. query explicit_supertraits_containing_assoc_item( key: (DefId, rustc_span::Ident) ) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { desc { |tcx| "computing the super traits of `{}` with associated type name `{}`", tcx.def_path_str(key.0), key.1 } } /// Compute the conditions that need to hold for a conditionally-const item to be const. /// That is, compute the set of `~const` where clauses for a given item. /// /// This can be thought of as the `~const` equivalent of `predicates_of`. These are the /// predicates that need to be proven at usage sites, and can be assumed at definition. /// /// This query also computes the `~const` where clauses for associated types, which are /// not "const", but which have item bounds which may be `~const`. These must hold for /// the `~const` item bound to hold. query const_conditions( key: DefId ) -> ty::ConstConditions<'tcx> { desc { |tcx| "computing the conditions for `{}` to be considered const", tcx.def_path_str(key) } separate_provide_extern } /// Compute the const bounds that are implied for a conditionally-const item. /// /// This can be though of as the `~const` equivalent of `explicit_item_bounds`. These /// are the predicates that need to proven at definition sites, and can be assumed at /// usage sites. query explicit_implied_const_bounds( key: DefId ) -> ty::EarlyBinder<'tcx, &'tcx [(ty::PolyTraitRef<'tcx>, Span)]> { desc { |tcx| "computing the implied `~const` bounds for `{}`", tcx.def_path_str(key) } separate_provide_extern } /// To avoid cycles within the predicates of a single item we compute /// per-type-parameter predicates for resolving `T::AssocTy`. query type_param_predicates( key: (LocalDefId, LocalDefId, rustc_span::Ident) ) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { desc { |tcx| "computing the bounds for type parameter `{}`", tcx.hir_ty_param_name(key.1) } } query trait_def(key: DefId) -> &'tcx ty::TraitDef { desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) } arena_cache cache_on_disk_if { key.is_local() } separate_provide_extern } query adt_def(key: DefId) -> ty::AdtDef<'tcx> { desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query adt_destructor(key: DefId) -> Option { desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query adt_async_destructor(key: DefId) -> Option { desc { |tcx| "computing `AsyncDrop` impl for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query adt_sized_constraint(key: DefId) -> Option>> { desc { |tcx| "computing the `Sized` constraint for `{}`", tcx.def_path_str(key) } } query adt_dtorck_constraint( key: DefId ) -> &'tcx DropckConstraint<'tcx> { desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) } } /// Returns the constness of the function-like[^1] definition given by `DefId`. /// /// Tuple struct/variant constructors are *always* const, foreign functions are /// *never* const. The rest is const iff marked with keyword `const` (or rather /// its parent in the case of associated functions). /// ///
/// /// **Do not call this query** directly. It is only meant to cache the base data for the /// higher-level functions. Consider using `is_const_fn` or `is_const_trait_impl` instead. /// /// Also note that neither of them takes into account feature gates, stability and /// const predicates/conditions! /// ///
/// /// # Panics /// /// This query will panic if the given definition is not function-like[^1]. /// /// [^1]: Tuple struct/variant constructors, closures and free, associated and foreign functions. query constness(key: DefId) -> hir::Constness { desc { |tcx| "checking if item is const: `{}`", tcx.def_path_str(key) } separate_provide_extern feedable } query asyncness(key: DefId) -> ty::Asyncness { desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) } separate_provide_extern } /// Returns `true` if calls to the function may be promoted. /// /// This is either because the function is e.g., a tuple-struct or tuple-variant /// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should /// be removed in the future in favour of some form of check which figures out whether the /// function does not inspect the bits of any of its arguments (so is essentially just a /// constructor function). query is_promotable_const_fn(key: DefId) -> bool { desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) } } /// The body of the coroutine, modified to take its upvars by move rather than by ref. /// /// This is used by coroutine-closures, which must return a different flavor of coroutine /// when called using `AsyncFnOnce::call_once`. It is produced by the `ByMoveBody` pass which /// is run right after building the initial MIR, and will only be populated for coroutines /// which come out of the async closure desugaring. query coroutine_by_move_body_def_id(def_id: DefId) -> DefId { desc { |tcx| "looking up the coroutine by-move body for `{}`", tcx.def_path_str(def_id) } separate_provide_extern } /// Returns `Some(coroutine_kind)` if the node pointed to by `def_id` is a coroutine. query coroutine_kind(def_id: DefId) -> Option { desc { |tcx| "looking up coroutine kind of `{}`", tcx.def_path_str(def_id) } separate_provide_extern feedable } query coroutine_for_closure(def_id: DefId) -> DefId { desc { |_tcx| "Given a coroutine-closure def id, return the def id of the coroutine returned by it" } separate_provide_extern } /// Gets a map with the variances of every item in the local crate. /// ///
/// /// **Do not call this query** directly, use [`Self::variances_of`] instead. /// ///
query crate_variances(_: ()) -> &'tcx ty::CrateVariancesMap<'tcx> { arena_cache desc { "computing the variances for items in this crate" } } /// Returns the (inferred) variances of the item given by `DefId`. /// /// The list of variances corresponds to the list of (early-bound) generic /// parameters of the item (including its parents). /// /// **Tip**: You can use `#[rustc_variance]` on an item to basically print the /// result of this query for use in UI tests or for debugging purposes. query variances_of(def_id: DefId) -> &'tcx [ty::Variance] { desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern cycle_delay_bug } /// Gets a map with the inferred outlives-predicates of every item in the local crate. /// ///
/// /// **Do not call this query** directly, use [`Self::inferred_outlives_of`] instead. /// ///
query inferred_outlives_crate(_: ()) -> &'tcx ty::CratePredicatesMap<'tcx> { arena_cache desc { "computing the inferred outlives-predicates for items in this crate" } } /// Maps from an impl/trait or struct/variant `DefId` /// to a list of the `DefId`s of its associated items or fields. query associated_item_def_ids(key: DefId) -> &'tcx [DefId] { desc { |tcx| "collecting associated items or fields of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Maps from a trait/impl item to the trait/impl item "descriptor". query associated_item(key: DefId) -> ty::AssocItem { desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern feedable } /// Collects the associated items defined on a trait or impl. query associated_items(key: DefId) -> &'tcx ty::AssocItems { arena_cache desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) } } /// Maps from associated items on a trait to the corresponding associated /// item on the impl specified by `impl_id`. /// /// For example, with the following code /// /// ``` /// struct Type {} /// // DefId /// trait Trait { // trait_id /// fn f(); // trait_f /// fn g() {} // trait_g /// } /// /// impl Trait for Type { // impl_id /// fn f() {} // impl_f /// fn g() {} // impl_g /// } /// ``` /// /// The map returned for `tcx.impl_item_implementor_ids(impl_id)` would be ///`{ trait_f: impl_f, trait_g: impl_g }` query impl_item_implementor_ids(impl_id: DefId) -> &'tcx DefIdMap { arena_cache desc { |tcx| "comparing impl items against trait for `{}`", tcx.def_path_str(impl_id) } } /// Given `fn_def_id` of a trait or of an impl that implements a given trait: /// if `fn_def_id` is the def id of a function defined inside a trait, then it creates and returns /// the associated items that correspond to each impl trait in return position for that trait. /// if `fn_def_id` is the def id of a function defined inside an impl that implements a trait, then it /// creates and returns the associated items that correspond to each impl trait in return position /// of the implemented trait. query associated_types_for_impl_traits_in_associated_fn(fn_def_id: DefId) -> &'tcx [DefId] { desc { |tcx| "creating associated items for opaque types returned by `{}`", tcx.def_path_str(fn_def_id) } cache_on_disk_if { fn_def_id.is_local() } separate_provide_extern } /// Given an impl trait in trait `opaque_ty_def_id`, create and return the corresponding /// associated item. query associated_type_for_impl_trait_in_trait(opaque_ty_def_id: LocalDefId) -> LocalDefId { desc { |tcx| "creating the associated item corresponding to the opaque type `{}`", tcx.def_path_str(opaque_ty_def_id.to_def_id()) } cache_on_disk_if { true } } /// Given an `impl_id`, return the trait it implements along with some header information. /// Return `None` if this is an inherent impl. query impl_trait_header(impl_id: DefId) -> Option> { desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(impl_id) } cache_on_disk_if { impl_id.is_local() } separate_provide_extern } query self_ty_of_trait_impl_enabling_order_dep_trait_object_hack( key: DefId ) -> Option>> { desc { |tcx| "computing self type wrt issue #33140 `{}`", tcx.def_path_str(key) } } /// Maps a `DefId` of a type to a list of its inherent impls. /// Contains implementations of methods that are inherent to a type. /// Methods in these implementations don't need to be exported. query inherent_impls(key: DefId) -> &'tcx [DefId] { desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query incoherent_impls(key: SimplifiedType) -> &'tcx [DefId] { desc { |tcx| "collecting all inherent impls for `{:?}`", key } } /// Unsafety-check this `LocalDefId`. query check_unsafety(key: LocalDefId) { desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { true } } /// Checks well-formedness of tail calls (`become f()`). query check_tail_calls(key: LocalDefId) -> Result<(), rustc_errors::ErrorGuaranteed> { desc { |tcx| "tail-call-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { true } } /// Returns the types assumed to be well formed while "inside" of the given item. /// /// Note that we've liberated the late bound regions of function signatures, so /// this can not be used to check whether these types are well formed. query assumed_wf_types(key: LocalDefId) -> &'tcx [(Ty<'tcx>, Span)] { desc { |tcx| "computing the implied bounds of `{}`", tcx.def_path_str(key) } } /// We need to store the assumed_wf_types for an RPITIT so that impls of foreign /// traits with return-position impl trait in traits can inherit the right wf types. query assumed_wf_types_for_rpitit(key: DefId) -> &'tcx [(Ty<'tcx>, Span)] { desc { |tcx| "computing the implied bounds of `{}`", tcx.def_path_str(key) } separate_provide_extern } /// Computes the signature of the function. query fn_sig(key: DefId) -> ty::EarlyBinder<'tcx, ty::PolyFnSig<'tcx>> { desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern cycle_delay_bug } /// Performs lint checking for the module. query lint_mod(key: LocalModDefId) { desc { |tcx| "linting {}", describe_as_module(key, tcx) } } query check_unused_traits(_: ()) { desc { "checking unused trait imports in crate" } } /// Checks the attributes in the module. query check_mod_attrs(key: LocalModDefId) { desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) } } /// Checks for uses of unstable APIs in the module. query check_mod_unstable_api_usage(key: LocalModDefId) { desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) } } /// Checks the loops in the module. query check_mod_loops(key: LocalModDefId) { desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) } } query check_mod_naked_functions(key: LocalModDefId) { desc { |tcx| "checking naked functions in {}", describe_as_module(key, tcx) } } query check_mod_privacy(key: LocalModDefId) { desc { |tcx| "checking privacy in {}", describe_as_module(key.to_local_def_id(), tcx) } } query check_liveness(key: LocalDefId) { desc { |tcx| "checking liveness of variables in `{}`", tcx.def_path_str(key) } } /// Return the live symbols in the crate for dead code check. /// /// The second return value maps from ADTs to ignored derived traits (e.g. Debug and Clone) and /// their respective impl (i.e., part of the derive macro) query live_symbols_and_ignored_derived_traits(_: ()) -> &'tcx ( LocalDefIdSet, LocalDefIdMap> ) { arena_cache desc { "finding live symbols in crate" } } query check_mod_deathness(key: LocalModDefId) { desc { |tcx| "checking deathness of variables in {}", describe_as_module(key, tcx) } } query check_mod_type_wf(key: LocalModDefId) -> Result<(), ErrorGuaranteed> { desc { |tcx| "checking that types are well-formed in {}", describe_as_module(key, tcx) } return_result_from_ensure_ok } /// Caches `CoerceUnsized` kinds for impls on custom types. query coerce_unsized_info(key: DefId) -> Result { desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern return_result_from_ensure_ok } query typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { desc { |tcx| "type-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if(tcx) { !tcx.is_typeck_child(key.to_def_id()) } } query used_trait_imports(key: LocalDefId) -> &'tcx UnordSet { desc { |tcx| "finding used_trait_imports `{}`", tcx.def_path_str(key) } cache_on_disk_if { true } } query coherent_trait(def_id: DefId) -> Result<(), ErrorGuaranteed> { desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) } return_result_from_ensure_ok } /// Borrow-checks the function body. If this is a closure, returns /// additional requirements that the closure's creator must verify. query mir_borrowck(key: LocalDefId) -> &'tcx mir::BorrowCheckResult<'tcx> { desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if(tcx) { tcx.is_typeck_child(key.to_def_id()) } } /// Gets a complete map from all types to their inherent impls. /// ///
/// /// **Not meant to be used** directly outside of coherence. /// ///
query crate_inherent_impls(k: ()) -> (&'tcx CrateInherentImpls, Result<(), ErrorGuaranteed>) { desc { "finding all inherent impls defined in crate" } } /// Checks all types in the crate for overlap in their inherent impls. Reports errors. /// ///
/// /// **Not meant to be used** directly outside of coherence. /// ///
query crate_inherent_impls_validity_check(_: ()) -> Result<(), ErrorGuaranteed> { desc { "check for inherent impls that should not be defined in crate" } return_result_from_ensure_ok } /// Checks all types in the crate for overlap in their inherent impls. Reports errors. /// ///
/// /// **Not meant to be used** directly outside of coherence. /// ///
query crate_inherent_impls_overlap_check(_: ()) -> Result<(), ErrorGuaranteed> { desc { "check for overlap between inherent impls defined in this crate" } return_result_from_ensure_ok } /// Checks whether all impls in the crate pass the overlap check, returning /// which impls fail it. If all impls are correct, the returned slice is empty. query orphan_check_impl(key: LocalDefId) -> Result<(), ErrorGuaranteed> { desc { |tcx| "checking whether impl `{}` follows the orphan rules", tcx.def_path_str(key), } return_result_from_ensure_ok } /// Check whether the function has any recursion that could cause the inliner to trigger /// a cycle. query mir_callgraph_reachable(key: (ty::Instance<'tcx>, LocalDefId)) -> bool { fatal_cycle desc { |tcx| "computing if `{}` (transitively) calls `{}`", key.0, tcx.def_path_str(key.1), } } /// Obtain all the calls into other local functions query mir_inliner_callees(key: ty::InstanceKind<'tcx>) -> &'tcx [(DefId, GenericArgsRef<'tcx>)] { fatal_cycle desc { |tcx| "computing all local function calls in `{}`", tcx.def_path_str(key.def_id()), } } /// Computes the tag (if any) for a given type and variant. /// /// `None` means that the variant doesn't need a tag (because it is niched). /// /// # Panics /// /// This query will panic for uninhabited variants and if the passed type is not an enum. query tag_for_variant( key: (Ty<'tcx>, abi::VariantIdx) ) -> Option { desc { "computing variant tag for enum" } } /// Evaluates a constant and returns the computed allocation. /// ///
/// /// **Do not call this query** directly, use [`Self::eval_to_const_value_raw`] or /// [`Self::eval_to_valtree`] instead. /// ///
query eval_to_allocation_raw(key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>) -> EvalToAllocationRawResult<'tcx> { desc { |tcx| "const-evaluating + checking `{}`", key.value.display(tcx) } cache_on_disk_if { true } } /// Evaluate a static's initializer, returning the allocation of the initializer's memory. query eval_static_initializer(key: DefId) -> EvalStaticInitializerRawResult<'tcx> { desc { |tcx| "evaluating initializer of static `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern feedable } /// Evaluates const items or anonymous constants[^1] into a representation /// suitable for the type system and const generics. /// ///
/// /// **Do not call this** directly, use one of the following wrappers: /// [`TyCtxt::const_eval_poly`], [`TyCtxt::const_eval_resolve`], /// [`TyCtxt::const_eval_instance`], or [`TyCtxt::const_eval_global_id`]. /// ///
/// /// [^1]: Such as enum variant explicit discriminants or array lengths. query eval_to_const_value_raw(key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>) -> EvalToConstValueResult<'tcx> { desc { |tcx| "simplifying constant for the type system `{}`", key.value.display(tcx) } depth_limit cache_on_disk_if { true } } /// Evaluate a constant and convert it to a type level constant or /// return `None` if that is not possible. query eval_to_valtree( key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>> ) -> EvalToValTreeResult<'tcx> { desc { "evaluating type-level constant" } } /// Converts a type-level constant value into a MIR constant value. query valtree_to_const_val(key: ty::Value<'tcx>) -> mir::ConstValue<'tcx> { desc { "converting type-level constant value to MIR constant value"} } /// Destructures array, ADT or tuple constants into the constants /// of their fields. query destructure_const(key: ty::Const<'tcx>) -> ty::DestructuredConst<'tcx> { desc { "destructuring type level constant"} } // FIXME get rid of this with valtrees query lit_to_const( key: LitToConstInput<'tcx> ) -> ty::Const<'tcx> { desc { "converting literal to const" } } query check_match(key: LocalDefId) -> Result<(), rustc_errors::ErrorGuaranteed> { desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { true } } /// Performs part of the privacy check and computes effective visibilities. query effective_visibilities(_: ()) -> &'tcx EffectiveVisibilities { eval_always desc { "checking effective visibilities" } } query check_private_in_public(_: ()) { eval_always desc { "checking for private elements in public interfaces" } } query reachable_set(_: ()) -> &'tcx LocalDefIdSet { arena_cache desc { "reachability" } cache_on_disk_if { true } } /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; /// in the case of closures, this will be redirected to the enclosing function. query region_scope_tree(def_id: DefId) -> &'tcx crate::middle::region::ScopeTree { desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) } } /// Generates a MIR body for the shim. query mir_shims(key: ty::InstanceKind<'tcx>) -> &'tcx mir::Body<'tcx> { arena_cache desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) } } /// The `symbol_name` query provides the symbol name for calling a /// given instance from the local crate. In particular, it will also /// look up the correct symbol name of instances from upstream crates. query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName<'tcx> { desc { "computing the symbol for `{}`", key } cache_on_disk_if { true } } query def_kind(def_id: DefId) -> DefKind { desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern feedable } /// Gets the span for the definition. query def_span(def_id: DefId) -> Span { desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern feedable } /// Gets the span for the identifier of the definition. query def_ident_span(def_id: DefId) -> Option { desc { |tcx| "looking up span for `{}`'s identifier", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern feedable } query lookup_stability(def_id: DefId) -> Option { desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query lookup_const_stability(def_id: DefId) -> Option { desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query lookup_default_body_stability(def_id: DefId) -> Option { desc { |tcx| "looking up default body stability of `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query should_inherit_track_caller(def_id: DefId) -> bool { desc { |tcx| "computing should_inherit_track_caller of `{}`", tcx.def_path_str(def_id) } } query lookup_deprecation_entry(def_id: DefId) -> Option { desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } /// Determines whether an item is annotated with `#[doc(hidden)]`. query is_doc_hidden(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` is `doc(hidden)`", tcx.def_path_str(def_id) } separate_provide_extern } /// Determines whether an item is annotated with `#[doc(notable_trait)]`. query is_doc_notable_trait(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` is `doc(notable_trait)`", tcx.def_path_str(def_id) } } /// Returns the attributes on the item at `def_id`. /// /// Do not use this directly, use `tcx.get_attrs` instead. query attrs_for_def(def_id: DefId) -> &'tcx [hir::Attribute] { desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query codegen_fn_attrs(def_id: DefId) -> &'tcx CodegenFnAttrs { desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) } arena_cache cache_on_disk_if { def_id.is_local() } separate_provide_extern feedable } query asm_target_features(def_id: DefId) -> &'tcx FxIndexSet { desc { |tcx| "computing target features for inline asm of `{}`", tcx.def_path_str(def_id) } } query fn_arg_names(def_id: DefId) -> &'tcx [rustc_span::Ident] { desc { |tcx| "looking up function parameter names for `{}`", tcx.def_path_str(def_id) } separate_provide_extern } /// Gets the rendered value of the specified constant or associated constant. /// Used by rustdoc. query rendered_const(def_id: DefId) -> &'tcx String { arena_cache desc { |tcx| "rendering constant initializer of `{}`", tcx.def_path_str(def_id) } separate_provide_extern } /// Gets the rendered precise capturing args for an opaque for use in rustdoc. query rendered_precise_capturing_args(def_id: DefId) -> Option<&'tcx [Symbol]> { desc { |tcx| "rendering precise capturing args for `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query impl_parent(def_id: DefId) -> Option { desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query is_ctfe_mir_available(key: DefId) -> bool { desc { |tcx| "checking if item has CTFE MIR available: `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query is_mir_available(key: DefId) -> bool { desc { |tcx| "checking if item has MIR available: `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query own_existential_vtable_entries( key: DefId ) -> &'tcx [DefId] { desc { |tcx| "finding all existential vtable entries for trait `{}`", tcx.def_path_str(key) } } query vtable_entries(key: ty::TraitRef<'tcx>) -> &'tcx [ty::VtblEntry<'tcx>] { desc { |tcx| "finding all vtable entries for trait `{}`", tcx.def_path_str(key.def_id) } } query first_method_vtable_slot(key: ty::TraitRef<'tcx>) -> usize { desc { |tcx| "finding the slot within the vtable of `{}` for the implementation of `{}`", key.self_ty(), key.print_only_trait_name() } } query supertrait_vtable_slot(key: (Ty<'tcx>, Ty<'tcx>)) -> Option { desc { |tcx| "finding the slot within vtable for trait object `{}` vtable ptr during trait upcasting coercion from `{}` vtable", key.1, key.0 } } query vtable_allocation(key: (Ty<'tcx>, Option>)) -> mir::interpret::AllocId { desc { |tcx| "vtable const allocation for <{} as {}>", key.0, key.1.map(|trait_ref| format!("{trait_ref}")).unwrap_or("_".to_owned()) } } query codegen_select_candidate( key: PseudoCanonicalInput<'tcx, ty::TraitRef<'tcx>> ) -> Result<&'tcx ImplSource<'tcx, ()>, CodegenObligationError> { cache_on_disk_if { true } desc { |tcx| "computing candidate for `{}`", key.value } } /// Return all `impl` blocks in the current crate. query all_local_trait_impls(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexMap> { desc { "finding local trait impls" } } /// Given a trait `trait_id`, return all known `impl` blocks. query trait_impls_of(trait_id: DefId) -> &'tcx ty::trait_def::TraitImpls { arena_cache desc { |tcx| "finding trait impls of `{}`", tcx.def_path_str(trait_id) } } query specialization_graph_of(trait_id: DefId) -> Result<&'tcx specialization_graph::Graph, ErrorGuaranteed> { desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(trait_id) } cache_on_disk_if { true } return_result_from_ensure_ok } query dyn_compatibility_violations(trait_id: DefId) -> &'tcx [DynCompatibilityViolation] { desc { |tcx| "determining dyn-compatibility of trait `{}`", tcx.def_path_str(trait_id) } } query is_dyn_compatible(trait_id: DefId) -> bool { desc { |tcx| "checking if trait `{}` is dyn-compatible", tcx.def_path_str(trait_id) } } /// Gets the ParameterEnvironment for a given item; this environment /// will be in "user-facing" mode, meaning that it is suitable for /// type-checking etc, and it does not normalize specializable /// associated types. /// /// You should almost certainly not use this. If you already have an InferCtxt, then /// you should also probably have a `ParamEnv` from when it was built. If you don't, /// then you should take a `TypingEnv` to ensure that you handle opaque types correctly. query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> { desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) } feedable } /// Like `param_env`, but returns the `ParamEnv` after all opaque types have been /// replaced with their hidden type. This is used in the old trait solver /// when in `PostAnalysis` mode and should not be called directly. query param_env_normalized_for_post_analysis(def_id: DefId) -> ty::ParamEnv<'tcx> { desc { |tcx| "computing revealed normalized predicates of `{}`", tcx.def_path_str(def_id) } } /// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`, /// `ty.is_copy()`, etc, since that will prune the environment where possible. query is_copy_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is `Copy`", env.value } } /// Query backing `Ty::is_sized`. query is_sized_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is `Sized`", env.value } } /// Query backing `Ty::is_freeze`. query is_freeze_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is freeze", env.value } } /// Query backing `Ty::is_unpin`. query is_unpin_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is `Unpin`", env.value } } /// Query backing `Ty::needs_drop`. query needs_drop_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` needs drop", env.value } } /// Query backing `Ty::needs_async_drop`. query needs_async_drop_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` needs async drop", env.value } } /// Query backing `Ty::has_significant_drop_raw`. query has_significant_drop_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` has a significant drop", env.value } } /// Query backing `Ty::is_structural_eq_shallow`. /// /// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types /// correctly. query has_structural_eq_impl(ty: Ty<'tcx>) -> bool { desc { "computing whether `{}` implements `StructuralPartialEq`", ty } } /// A list of types where the ADT requires drop if and only if any of /// those types require drop. If the ADT is known to always need drop /// then `Err(AlwaysRequiresDrop)` is returned. query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List>, AlwaysRequiresDrop> { desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) } cache_on_disk_if { true } } /// A list of types where the ADT requires drop if and only if any of those types /// has significant drop. A type marked with the attribute `rustc_insignificant_dtor` /// is considered to not be significant. A drop is significant if it is implemented /// by the user or does anything that will have any observable behavior (other than /// freeing up memory). If the ADT is known to have a significant destructor then /// `Err(AlwaysRequiresDrop)` is returned. query adt_significant_drop_tys(def_id: DefId) -> Result<&'tcx ty::List>, AlwaysRequiresDrop> { desc { |tcx| "computing when `{}` has a significant destructor", tcx.def_path_str(def_id) } cache_on_disk_if { false } } /// Returns a list of types which (a) have a potentially significant destructor /// and (b) may be dropped as a result of dropping a value of some type `ty` /// (in the given environment). /// /// The idea of "significant" drop is somewhat informal and is used only for /// diagnostics and edition migrations. The idea is that a significant drop may have /// some visible side-effect on execution; freeing memory is NOT considered a side-effect. /// The rules are as follows: /// * Type with no explicit drop impl do not have significant drop. /// * Types with a drop impl are assumed to have significant drop unless they have a `#[rustc_insignificant_dtor]` annotation. /// /// Note that insignificant drop is a "shallow" property. A type like `Vec` does not /// have significant drop but the type `LockGuard` does, and so if `ty = Vec` /// then the return value would be `&[LockGuard]`. /// *IMPORTANT*: *DO NOT* run this query before promoted MIR body is constructed, /// because this query partially depends on that query. /// Otherwise, there is a risk of query cycles. query list_significant_drop_tys(ty: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> &'tcx ty::List> { desc { |tcx| "computing when `{}` has a significant destructor", ty.value } cache_on_disk_if { false } } /// Computes the layout of a type. Note that this implicitly /// executes in `TypingMode::PostAnalysis`, and will normalize the input type. query layout_of( key: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>> ) -> Result, &'tcx ty::layout::LayoutError<'tcx>> { depth_limit desc { "computing layout of `{}`", key.value } // we emit our own error during query cycle handling cycle_delay_bug } /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers. /// /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance` /// instead, where the instance is an `InstanceKind::Virtual`. query fn_abi_of_fn_ptr( key: ty::PseudoCanonicalInput<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List>)> ) -> Result<&'tcx rustc_target::callconv::FnAbi<'tcx, Ty<'tcx>>, &'tcx ty::layout::FnAbiError<'tcx>> { desc { "computing call ABI of `{}` function pointers", key.value.0 } } /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for /// direct calls to an `fn`. /// /// NB: that includes virtual calls, which are represented by "direct calls" /// to an `InstanceKind::Virtual` instance (of `::fn`). query fn_abi_of_instance( key: ty::PseudoCanonicalInput<'tcx, (ty::Instance<'tcx>, &'tcx ty::List>)> ) -> Result<&'tcx rustc_target::callconv::FnAbi<'tcx, Ty<'tcx>>, &'tcx ty::layout::FnAbiError<'tcx>> { desc { "computing call ABI of `{}`", key.value.0 } } query dylib_dependency_formats(_: CrateNum) -> &'tcx [(CrateNum, LinkagePreference)] { desc { "getting dylib dependency formats of crate" } separate_provide_extern } query dependency_formats(_: ()) -> &'tcx Arc { arena_cache desc { "getting the linkage format of all dependencies" } } query is_compiler_builtins(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate is_compiler_builtins" } separate_provide_extern } query has_global_allocator(_: CrateNum) -> bool { // This query depends on untracked global state in CStore eval_always fatal_cycle desc { "checking if the crate has_global_allocator" } separate_provide_extern } query has_alloc_error_handler(_: CrateNum) -> bool { // This query depends on untracked global state in CStore eval_always fatal_cycle desc { "checking if the crate has_alloc_error_handler" } separate_provide_extern } query has_panic_handler(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate has_panic_handler" } separate_provide_extern } query is_profiler_runtime(_: CrateNum) -> bool { fatal_cycle desc { "checking if a crate is `#![profiler_runtime]`" } separate_provide_extern } query has_ffi_unwind_calls(key: LocalDefId) -> bool { desc { |tcx| "checking if `{}` contains FFI-unwind calls", tcx.def_path_str(key) } cache_on_disk_if { true } } query required_panic_strategy(_: CrateNum) -> Option { fatal_cycle desc { "getting a crate's required panic strategy" } separate_provide_extern } query panic_in_drop_strategy(_: CrateNum) -> PanicStrategy { fatal_cycle desc { "getting a crate's configured panic-in-drop strategy" } separate_provide_extern } query is_no_builtins(_: CrateNum) -> bool { fatal_cycle desc { "getting whether a crate has `#![no_builtins]`" } separate_provide_extern } query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion { fatal_cycle desc { "getting a crate's symbol mangling version" } separate_provide_extern } query extern_crate(def_id: CrateNum) -> Option<&'tcx ExternCrate> { eval_always desc { "getting crate's ExternCrateData" } separate_provide_extern } query specialization_enabled_in(cnum: CrateNum) -> bool { desc { "checking whether the crate enabled `specialization`/`min_specialization`" } separate_provide_extern } query specializes(_: (DefId, DefId)) -> bool { desc { "computing whether impls specialize one another" } } query in_scope_traits_map(_: hir::OwnerId) -> Option<&'tcx ItemLocalMap>> { desc { "getting traits in scope at a block" } } /// Returns whether the impl or associated function has the `default` keyword. query defaultness(def_id: DefId) -> hir::Defaultness { desc { |tcx| "looking up whether `{}` has `default`", tcx.def_path_str(def_id) } separate_provide_extern feedable } query check_well_formed(key: LocalDefId) -> Result<(), ErrorGuaranteed> { desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key) } return_result_from_ensure_ok } query enforce_impl_non_lifetime_params_are_constrained(key: LocalDefId) -> Result<(), ErrorGuaranteed> { desc { |tcx| "checking that `{}`'s generics are constrained by the impl header", tcx.def_path_str(key) } return_result_from_ensure_ok } // The `DefId`s of all non-generic functions and statics in the given crate // that can be reached from outside the crate. // // We expect this items to be available for being linked to. // // This query can also be called for `LOCAL_CRATE`. In this case it will // compute which items will be reachable to other crates, taking into account // the kind of crate that is currently compiled. Crates with only a // C interface have fewer reachable things. // // Does not include external symbols that don't have a corresponding DefId, // like the compiler-generated `main` function and so on. query reachable_non_generics(_: CrateNum) -> &'tcx DefIdMap { arena_cache desc { "looking up the exported symbols of a crate" } separate_provide_extern } query is_reachable_non_generic(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query is_unreachable_local_definition(def_id: LocalDefId) -> bool { desc { |tcx| "checking whether `{}` is reachable from outside the crate", tcx.def_path_str(def_id), } } /// The entire set of monomorphizations the local crate can safely /// link to because they are exported from upstream crates. Do /// not depend on this directly, as its value changes anytime /// a monomorphization gets added or removed in any upstream /// crate. Instead use the narrower `upstream_monomorphizations_for`, /// `upstream_drop_glue_for`, `upstream_async_drop_glue_for`, or, /// even better, `Instance::upstream_monomorphization()`. query upstream_monomorphizations(_: ()) -> &'tcx DefIdMap, CrateNum>> { arena_cache desc { "collecting available upstream monomorphizations" } } /// Returns the set of upstream monomorphizations available for the /// generic function identified by the given `def_id`. The query makes /// sure to make a stable selection if the same monomorphization is /// available in multiple upstream crates. /// /// You likely want to call `Instance::upstream_monomorphization()` /// instead of invoking this query directly. query upstream_monomorphizations_for(def_id: DefId) -> Option<&'tcx UnordMap, CrateNum>> { desc { |tcx| "collecting available upstream monomorphizations for `{}`", tcx.def_path_str(def_id), } separate_provide_extern } /// Returns the upstream crate that exports drop-glue for the given /// type (`args` is expected to be a single-item list containing the /// type one wants drop-glue for). /// /// This is a subset of `upstream_monomorphizations_for` in order to /// increase dep-tracking granularity. Otherwise adding or removing any /// type with drop-glue in any upstream crate would invalidate all /// functions calling drop-glue of an upstream type. /// /// You likely want to call `Instance::upstream_monomorphization()` /// instead of invoking this query directly. /// /// NOTE: This query could easily be extended to also support other /// common functions that have are large set of monomorphizations /// (like `Clone::clone` for example). query upstream_drop_glue_for(args: GenericArgsRef<'tcx>) -> Option { desc { "available upstream drop-glue for `{:?}`", args } } /// Returns the upstream crate that exports async-drop-glue for /// the given type (`args` is expected to be a single-item list /// containing the type one wants async-drop-glue for). /// /// This is a subset of `upstream_monomorphizations_for` in order /// to increase dep-tracking granularity. Otherwise adding or /// removing any type with async-drop-glue in any upstream crate /// would invalidate all functions calling async-drop-glue of an /// upstream type. /// /// You likely want to call `Instance::upstream_monomorphization()` /// instead of invoking this query directly. /// /// NOTE: This query could easily be extended to also support other /// common functions that have are large set of monomorphizations /// (like `Clone::clone` for example). query upstream_async_drop_glue_for(args: GenericArgsRef<'tcx>) -> Option { desc { "available upstream async-drop-glue for `{:?}`", args } } /// Returns a list of all `extern` blocks of a crate. query foreign_modules(_: CrateNum) -> &'tcx FxIndexMap { arena_cache desc { "looking up the foreign modules of a linked crate" } separate_provide_extern } /// Lint against `extern fn` declarations having incompatible types. query clashing_extern_declarations(_: ()) { desc { "checking `extern fn` declarations are compatible" } } /// Identifies the entry-point (e.g., the `main` function) for a given /// crate, returning `None` if there is no entry point (such as for library crates). query entry_fn(_: ()) -> Option<(DefId, EntryFnType)> { desc { "looking up the entry function of a crate" } } /// Finds the `rustc_proc_macro_decls` item of a crate. query proc_macro_decls_static(_: ()) -> Option { desc { "looking up the proc macro declarations for a crate" } } // The macro which defines `rustc_metadata::provide_extern` depends on this query's name. // Changing the name should cause a compiler error, but in case that changes, be aware. query crate_hash(_: CrateNum) -> Svh { eval_always desc { "looking up the hash a crate" } separate_provide_extern } /// Gets the hash for the host proc macro. Used to support -Z dual-proc-macro. query crate_host_hash(_: CrateNum) -> Option { eval_always desc { "looking up the hash of a host version of a crate" } separate_provide_extern } /// Gets the extra data to put in each output filename for a crate. /// For example, compiling the `foo` crate with `extra-filename=-a` creates a `libfoo-b.rlib` file. query extra_filename(_: CrateNum) -> &'tcx String { arena_cache eval_always desc { "looking up the extra filename for a crate" } separate_provide_extern } /// Gets the paths where the crate came from in the file system. query crate_extern_paths(_: CrateNum) -> &'tcx Vec { arena_cache eval_always desc { "looking up the paths for extern crates" } separate_provide_extern } /// Given a crate and a trait, look up all impls of that trait in the crate. /// Return `(impl_id, self_ty)`. query implementations_of_trait(_: (CrateNum, DefId)) -> &'tcx [(DefId, Option)] { desc { "looking up implementations of a trait in a crate" } separate_provide_extern } /// Collects all incoherent impls for the given crate and type. /// /// Do not call this directly, but instead use the `incoherent_impls` query. /// This query is only used to get the data necessary for that query. query crate_incoherent_impls(key: (CrateNum, SimplifiedType)) -> &'tcx [DefId] { desc { |tcx| "collecting all impls for a type in a crate" } separate_provide_extern } /// Get the corresponding native library from the `native_libraries` query query native_library(def_id: DefId) -> Option<&'tcx NativeLib> { desc { |tcx| "getting the native library for `{}`", tcx.def_path_str(def_id) } } query inherit_sig_for_delegation_item(def_id: LocalDefId) -> &'tcx [Ty<'tcx>] { desc { "inheriting delegation signature" } } /// Does lifetime resolution on items. Importantly, we can't resolve /// lifetimes directly on things like trait methods, because of trait params. /// See `rustc_resolve::late::lifetimes` for details. query resolve_bound_vars(owner_id: hir::OwnerId) -> &'tcx ResolveBoundVars { arena_cache desc { |tcx| "resolving lifetimes for `{}`", tcx.def_path_str(owner_id) } } query named_variable_map(owner_id: hir::OwnerId) -> &'tcx SortedMap { desc { |tcx| "looking up a named region inside `{}`", tcx.def_path_str(owner_id) } } query is_late_bound_map(owner_id: hir::OwnerId) -> Option<&'tcx FxIndexSet> { desc { |tcx| "testing if a region is late bound inside `{}`", tcx.def_path_str(owner_id) } } /// Returns the *default lifetime* to be used if a trait object type were to be passed for /// the type parameter given by `DefId`. /// /// **Tip**: You can use `#[rustc_object_lifetime_default]` on an item to basically /// print the result of this query for use in UI tests or for debugging purposes. /// /// # Examples /// /// - For `T` in `struct Foo<'a, T: 'a>(&'a T);`, this would be `Param('a)` /// - For `T` in `struct Bar<'a, T>(&'a T);`, this would be `Empty` /// /// # Panics /// /// This query will panic if the given definition is not a type parameter. query object_lifetime_default(def_id: DefId) -> ObjectLifetimeDefault { desc { "looking up lifetime defaults for type parameter `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query late_bound_vars_map(owner_id: hir::OwnerId) -> &'tcx SortedMap> { desc { |tcx| "looking up late bound vars inside `{}`", tcx.def_path_str(owner_id) } } /// For an opaque type, return the list of (captured lifetime, inner generic param). /// ```ignore (illustrative) /// fn foo<'a: 'a, 'b, T>(&'b u8) -> impl Into + 'b { ... } /// ``` /// /// We would return `[('a, '_a), ('b, '_b)]`, with `'a` early-bound and `'b` late-bound. /// /// After hir_ty_lowering, we get: /// ```ignore (pseudo-code) /// opaque foo::<'a>::opaque<'_a, '_b>: Into> + '_b; /// ^^^^^^^^ inner generic params /// fn foo<'a>: for<'b> fn(&'b u8) -> foo::<'a>::opaque::<'a, 'b> /// ^^^^^^ captured lifetimes /// ``` query opaque_captured_lifetimes(def_id: LocalDefId) -> &'tcx [(ResolvedArg, LocalDefId)] { desc { |tcx| "listing captured lifetimes for opaque `{}`", tcx.def_path_str(def_id) } } /// Computes the visibility of the provided `def_id`. /// /// If the item from the `def_id` doesn't have a visibility, it will panic. For example /// a generic type parameter will panic if you call this method on it: /// /// ``` /// use std::fmt::Debug; /// /// pub trait Foo {} /// ``` /// /// In here, if you call `visibility` on `T`, it'll panic. query visibility(def_id: DefId) -> ty::Visibility { desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) } separate_provide_extern feedable } query inhabited_predicate_adt(key: DefId) -> ty::inhabitedness::InhabitedPredicate<'tcx> { desc { "computing the uninhabited predicate of `{:?}`", key } } /// Do not call this query directly: invoke `Ty::inhabited_predicate` instead. query inhabited_predicate_type(key: Ty<'tcx>) -> ty::inhabitedness::InhabitedPredicate<'tcx> { desc { "computing the uninhabited predicate of `{}`", key } } query dep_kind(_: CrateNum) -> CrateDepKind { eval_always desc { "fetching what a dependency looks like" } separate_provide_extern } /// Gets the name of the crate. query crate_name(_: CrateNum) -> Symbol { feedable desc { "fetching what a crate is named" } separate_provide_extern } query module_children(def_id: DefId) -> &'tcx [ModChild] { desc { |tcx| "collecting child items of module `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query extern_mod_stmt_cnum(def_id: LocalDefId) -> Option { desc { |tcx| "computing crate imported by `{}`", tcx.def_path_str(def_id) } } /// Gets the number of definitions in a foreign crate. /// /// This allows external tools to iterate over all definitions in a foreign crate. /// /// This should never be used for the local crate, instead use `iter_local_def_id`. query num_extern_def_ids(_: CrateNum) -> usize { desc { "fetching the number of definitions in a crate" } separate_provide_extern } query lib_features(_: CrateNum) -> &'tcx LibFeatures { desc { "calculating the lib features defined in a crate" } separate_provide_extern arena_cache } query stability_implications(_: CrateNum) -> &'tcx UnordMap { arena_cache desc { "calculating the implications between `#[unstable]` features defined in a crate" } separate_provide_extern } /// Whether the function is an intrinsic query intrinsic_raw(def_id: DefId) -> Option { desc { |tcx| "fetch intrinsic name if `{}` is an intrinsic", tcx.def_path_str(def_id) } separate_provide_extern } /// Returns the lang items defined in another crate by loading it from metadata. query get_lang_items(_: ()) -> &'tcx LanguageItems { arena_cache eval_always desc { "calculating the lang items map" } } /// Returns all diagnostic items defined in all crates. query all_diagnostic_items(_: ()) -> &'tcx rustc_hir::diagnostic_items::DiagnosticItems { arena_cache eval_always desc { "calculating the diagnostic items map" } } /// Returns the lang items defined in another crate by loading it from metadata. query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, LangItem)] { desc { "calculating the lang items defined in a crate" } separate_provide_extern } /// Returns the diagnostic items defined in a crate. query diagnostic_items(_: CrateNum) -> &'tcx rustc_hir::diagnostic_items::DiagnosticItems { arena_cache desc { "calculating the diagnostic items map in a crate" } separate_provide_extern } query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] { desc { "calculating the missing lang items in a crate" } separate_provide_extern } /// The visible parent map is a map from every item to a visible parent. /// It prefers the shortest visible path to an item. /// Used for diagnostics, for example path trimming. /// The parents are modules, enums or traits. query visible_parent_map(_: ()) -> &'tcx DefIdMap { arena_cache desc { "calculating the visible parent map" } } /// Collects the "trimmed", shortest accessible paths to all items for diagnostics. /// See the [provider docs](`rustc_middle::ty::print::trimmed_def_paths`) for more info. query trimmed_def_paths(_: ()) -> &'tcx DefIdMap { arena_cache desc { "calculating trimmed def paths" } } query missing_extern_crate_item(_: CrateNum) -> bool { eval_always desc { "seeing if we're missing an `extern crate` item for this crate" } separate_provide_extern } query used_crate_source(_: CrateNum) -> &'tcx Arc { arena_cache eval_always desc { "looking at the source for a crate" } separate_provide_extern } /// Returns the debugger visualizers defined for this crate. /// NOTE: This query has to be marked `eval_always` because it reads data /// directly from disk that is not tracked anywhere else. I.e. it /// represents a genuine input to the query system. query debugger_visualizers(_: CrateNum) -> &'tcx Vec { arena_cache desc { "looking up the debugger visualizers for this crate" } separate_provide_extern eval_always } query postorder_cnums(_: ()) -> &'tcx [CrateNum] { eval_always desc { "generating a postorder list of CrateNums" } } /// Returns whether or not the crate with CrateNum 'cnum' /// is marked as a private dependency query is_private_dep(c: CrateNum) -> bool { eval_always desc { "checking whether crate `{}` is a private dependency", c } separate_provide_extern } query allocator_kind(_: ()) -> Option { eval_always desc { "getting the allocator kind for the current crate" } } query alloc_error_handler_kind(_: ()) -> Option { eval_always desc { "alloc error handler kind for the current crate" } } query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap> { desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) } } query maybe_unused_trait_imports(_: ()) -> &'tcx FxIndexSet { desc { "fetching potentially unused trait imports" } } query names_imported_by_glob_use(def_id: LocalDefId) -> &'tcx UnordSet { desc { |tcx| "finding names imported by glob use for `{}`", tcx.def_path_str(def_id) } } query stability_index(_: ()) -> &'tcx stability::Index { arena_cache eval_always desc { "calculating the stability index for the local crate" } } /// All available crates in the graph, including those that should not be user-facing /// (such as private crates). query crates(_: ()) -> &'tcx [CrateNum] { eval_always desc { "fetching all foreign CrateNum instances" } } // Crates that are loaded non-speculatively (not for diagnostics or doc links). // FIXME: This is currently only used for collecting lang items, but should be used instead of // `crates` in most other cases too. query used_crates(_: ()) -> &'tcx [CrateNum] { eval_always desc { "fetching `CrateNum`s for all crates loaded non-speculatively" } } /// A list of all traits in a crate, used by rustdoc and error reporting. query traits(_: CrateNum) -> &'tcx [DefId] { desc { "fetching all traits in a crate" } separate_provide_extern } query trait_impls_in_crate(_: CrateNum) -> &'tcx [DefId] { desc { "fetching all trait impls in a crate" } separate_provide_extern } /// The list of symbols exported from the given crate. /// /// - All names contained in `exported_symbols(cnum)` are guaranteed to /// correspond to a publicly visible symbol in `cnum` machine code. /// - The `exported_symbols` sets of different crates do not intersect. query exported_symbols(cnum: CrateNum) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] { desc { "collecting exported symbols for crate `{}`", cnum} cache_on_disk_if { *cnum == LOCAL_CRATE } separate_provide_extern } query collect_and_partition_mono_items(_: ()) -> MonoItemPartitions<'tcx> { eval_always desc { "collect_and_partition_mono_items" } } query is_codegened_item(def_id: DefId) -> bool { desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) } } query codegen_unit(sym: Symbol) -> &'tcx CodegenUnit<'tcx> { desc { "getting codegen unit `{sym}`" } } query backend_optimization_level(_: ()) -> OptLevel { desc { "optimization level used by backend" } } /// Return the filenames where output artefacts shall be stored. /// /// This query returns an `&Arc` because codegen backends need the value even after the `TyCtxt` /// has been destroyed. query output_filenames(_: ()) -> &'tcx Arc { feedable desc { "getting output filenames" } arena_cache } ///
/// /// Do not call this query directly: Invoke `normalize` instead. /// ///
query normalize_canonicalized_projection_ty( goal: CanonicalAliasGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, NoSolution, > { desc { "normalizing `{}`", goal.canonical.value.value } } ///
/// /// Do not call this query directly: Invoke `normalize` instead. /// ///
query normalize_canonicalized_weak_ty( goal: CanonicalAliasGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, NoSolution, > { desc { "normalizing `{}`", goal.canonical.value.value } } ///
/// /// Do not call this query directly: Invoke `normalize` instead. /// ///
query normalize_canonicalized_inherent_projection_ty( goal: CanonicalAliasGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, NoSolution, > { desc { "normalizing `{}`", goal.canonical.value.value } } /// Do not call this query directly: invoke `try_normalize_erasing_regions` instead. query try_normalize_generic_arg_after_erasing_regions( goal: PseudoCanonicalInput<'tcx, GenericArg<'tcx>> ) -> Result, NoSolution> { desc { "normalizing `{}`", goal.value } } query implied_outlives_bounds( key: (CanonicalImpliedOutlivesBoundsGoal<'tcx>, bool) ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec>>>, NoSolution, > { desc { "computing implied outlives bounds for `{}` (hack disabled = {:?})", key.0.canonical.value.value.ty, key.1 } } /// Do not call this query directly: /// invoke `DropckOutlives::new(dropped_ty)).fully_perform(typeck.infcx)` instead. query dropck_outlives( goal: CanonicalDropckOutlivesGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution, > { desc { "computing dropck types for `{}`", goal.canonical.value.value.dropped_ty } } /// Do not call this query directly: invoke `infcx.predicate_may_hold()` or /// `infcx.predicate_must_hold()` instead. query evaluate_obligation( goal: CanonicalPredicateGoal<'tcx> ) -> Result { desc { "evaluating trait selection obligation `{}`", goal.canonical.value.value } } /// Do not call this query directly: part of the `Eq` type-op query type_op_ascribe_user_type( goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal.canonical.value.value } } /// Do not call this query directly: part of the `ProvePredicate` type-op query type_op_prove_predicate( goal: CanonicalTypeOpProvePredicateGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_prove_predicate` `{:?}`", goal.canonical.value.value } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_ty( goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>, NoSolution, > { desc { "normalizing `{}`", goal.canonical.value.value.value } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_clause( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Clause<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Clause<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal.canonical.value.value.value } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_poly_fn_sig( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal.canonical.value.value.value } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_fn_sig( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal.canonical.value.value.value } } query instantiate_and_check_impossible_predicates(key: (DefId, GenericArgsRef<'tcx>)) -> bool { desc { |tcx| "checking impossible instantiated predicates: `{}`", tcx.def_path_str(key.0) } } query is_impossible_associated_item(key: (DefId, DefId)) -> bool { desc { |tcx| "checking if `{}` is impossible to reference within `{}`", tcx.def_path_str(key.1), tcx.def_path_str(key.0), } } query method_autoderef_steps( goal: CanonicalTyGoal<'tcx> ) -> MethodAutoderefStepsResult<'tcx> { desc { "computing autoderef types for `{}`", goal.canonical.value.value } } /// Returns the Rust target features for the current target. These are not always the same as LLVM target features! query rust_target_features(_: CrateNum) -> &'tcx UnordMap { arena_cache eval_always desc { "looking up Rust target features" } } query implied_target_features(feature: Symbol) -> &'tcx Vec { arena_cache eval_always desc { "looking up implied target features" } } query features_query(_: ()) -> &'tcx rustc_feature::Features { feedable desc { "looking up enabled feature gates" } } query crate_for_resolver((): ()) -> &'tcx Steal<(rustc_ast::Crate, rustc_ast::AttrVec)> { feedable no_hash desc { "the ast before macro expansion and name resolution" } } /// Attempt to resolve the given `DefId` to an `Instance`, for the /// given generics args (`GenericArgsRef`), returning one of: /// * `Ok(Some(instance))` on success /// * `Ok(None)` when the `GenericArgsRef` are still too generic, /// and therefore don't allow finding the final `Instance` /// * `Err(ErrorGuaranteed)` when the `Instance` resolution process /// couldn't complete due to errors elsewhere - this is distinct /// from `Ok(None)` to avoid misleading diagnostics when an error /// has already been/will be emitted, for the original cause. query resolve_instance_raw( key: ty::PseudoCanonicalInput<'tcx, (DefId, GenericArgsRef<'tcx>)> ) -> Result>, ErrorGuaranteed> { desc { "resolving instance `{}`", ty::Instance::new(key.value.0, key.value.1) } } query reveal_opaque_types_in_bounds(key: ty::Clauses<'tcx>) -> ty::Clauses<'tcx> { desc { "revealing opaque types in `{:?}`", key } } query limits(key: ()) -> Limits { desc { "looking up limits" } } /// Performs an HIR-based well-formed check on the item with the given `HirId`. If /// we get an `Unimplemented` error that matches the provided `Predicate`, return /// the cause of the newly created obligation. /// /// This is only used by error-reporting code to get a better cause (in particular, a better /// span) for an *existing* error. Therefore, it is best-effort, and may never handle /// all of the cases that the normal `ty::Ty`-based wfcheck does. This is fine, /// because the `ty::Ty`-based wfcheck is always run. query diagnostic_hir_wf_check( key: (ty::Predicate<'tcx>, WellFormedLoc) ) -> Option<&'tcx ObligationCause<'tcx>> { arena_cache eval_always no_hash desc { "performing HIR wf-checking for predicate `{:?}` at item `{:?}`", key.0, key.1 } } /// The list of backend features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, /// `--target` and similar). query global_backend_features(_: ()) -> &'tcx Vec { arena_cache eval_always desc { "computing the backend features for CLI flags" } } query check_validity_requirement(key: (ValidityRequirement, ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>)) -> Result> { desc { "checking validity requirement for `{}`: {}", key.1.value, key.0 } } /// This takes the def-id of an associated item from a impl of a trait, /// and checks its validity against the trait item it corresponds to. /// /// Any other def id will ICE. query compare_impl_item(key: LocalDefId) -> Result<(), ErrorGuaranteed> { desc { |tcx| "checking assoc item `{}` is compatible with trait definition", tcx.def_path_str(key) } return_result_from_ensure_ok } query deduced_param_attrs(def_id: DefId) -> &'tcx [ty::DeducedParamAttrs] { desc { |tcx| "deducing parameter attributes for {}", tcx.def_path_str(def_id) } separate_provide_extern } query doc_link_resolutions(def_id: DefId) -> &'tcx DocLinkResMap { eval_always desc { "resolutions for documentation links for a module" } separate_provide_extern } query doc_link_traits_in_scope(def_id: DefId) -> &'tcx [DefId] { eval_always desc { "traits in scope for documentation links for a module" } separate_provide_extern } /// Get all item paths that were stripped by a `#[cfg]` in a particular crate. /// Should not be called for the local crate before the resolver outputs are created, as it /// is only fed there. query stripped_cfg_items(cnum: CrateNum) -> &'tcx [StrippedCfgItem] { desc { "getting cfg-ed out item names" } separate_provide_extern } query generics_require_sized_self(def_id: DefId) -> bool { desc { "check whether the item has a `where Self: Sized` bound" } } query cross_crate_inlinable(def_id: DefId) -> bool { desc { "whether the item should be made inlinable across crates" } separate_provide_extern } /// Perform monomorphization-time checking on this item. /// This is used for lints/errors that can only be checked once the instance is fully /// monomorphized. query check_mono_item(key: ty::Instance<'tcx>) { desc { "monomorphization-time checking" } cache_on_disk_if { true } } /// Builds the set of functions that should be skipped for the move-size check. query skip_move_check_fns(_: ()) -> &'tcx FxIndexSet { arena_cache desc { "functions to skip for move-size check" } } query items_of_instance(key: (ty::Instance<'tcx>, CollectionMode)) -> (&'tcx [Spanned>], &'tcx [Spanned>]) { desc { "collecting items used by `{}`", key.0 } cache_on_disk_if { true } } query size_estimate(key: ty::Instance<'tcx>) -> usize { desc { "estimating codegen size of `{}`", key } cache_on_disk_if { true } } } rustc_query_append! { define_callbacks! } rustc_feedable_queries! { define_feedable! }