//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on //! how this works. //! //! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html //! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html use crate::infer::outlives::env::OutlivesEnvironment; use crate::infer::{CombinedSnapshot, InferOk, RegionckMode}; use crate::traits::select::IntercrateAmbiguityCause; use crate::traits::util::impl_trait_ref_and_oblig; use crate::traits::SkipLeakCheck; use crate::traits::{ self, FulfillmentContext, Normalized, Obligation, ObligationCause, PredicateObligation, PredicateObligations, SelectionContext, }; //use rustc_data_structures::fx::FxHashMap; use rustc_errors::Diagnostic; use rustc_hir::def_id::{DefId, LOCAL_CRATE}; use rustc_hir::CRATE_HIR_ID; use rustc_infer::infer::TyCtxtInferExt; use rustc_infer::traits::{util, TraitEngine}; use rustc_middle::traits::specialization_graph::OverlapMode; use rustc_middle::ty::fast_reject::{self, TreatParams}; use rustc_middle::ty::fold::TypeFoldable; use rustc_middle::ty::subst::Subst; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_span::symbol::sym; use rustc_span::DUMMY_SP; use std::iter; /// Whether we do the orphan check relative to this crate or /// to some remote crate. #[derive(Copy, Clone, Debug)] enum InCrate { Local, Remote, } #[derive(Debug, Copy, Clone)] pub enum Conflict { Upstream, Downstream, } pub struct OverlapResult<'tcx> { pub impl_header: ty::ImplHeader<'tcx>, pub intercrate_ambiguity_causes: Vec, /// `true` if the overlap might've been permitted before the shift /// to universes. pub involves_placeholder: bool, } pub fn add_placeholder_note(err: &mut Diagnostic) { err.note( "this behavior recently changed as a result of a bug fix; \ see rust-lang/rust#56105 for details", ); } /// If there are types that satisfy both impls, invokes `on_overlap` /// with a suitably-freshened `ImplHeader` with those types /// substituted. Otherwise, invokes `no_overlap`. #[instrument(skip(tcx, skip_leak_check, on_overlap, no_overlap), level = "debug")] pub fn overlapping_impls( tcx: TyCtxt<'_>, impl1_def_id: DefId, impl2_def_id: DefId, skip_leak_check: SkipLeakCheck, overlap_mode: OverlapMode, on_overlap: F1, no_overlap: F2, ) -> R where F1: FnOnce(OverlapResult<'_>) -> R, F2: FnOnce() -> R, { // Before doing expensive operations like entering an inference context, do // a quick check via fast_reject to tell if the impl headers could possibly // unify. let impl1_ref = tcx.impl_trait_ref(impl1_def_id); let impl2_ref = tcx.impl_trait_ref(impl2_def_id); // Check if any of the input types definitely do not unify. if iter::zip( impl1_ref.iter().flat_map(|tref| tref.substs.types()), impl2_ref.iter().flat_map(|tref| tref.substs.types()), ) .any(|(ty1, ty2)| { let t1 = fast_reject::simplify_type(tcx, ty1, TreatParams::AsPlaceholders); let t2 = fast_reject::simplify_type(tcx, ty2, TreatParams::AsPlaceholders); if let (Some(t1), Some(t2)) = (t1, t2) { // Simplified successfully t1 != t2 } else { // Types might unify false } }) { // Some types involved are definitely different, so the impls couldn't possibly overlap. debug!("overlapping_impls: fast_reject early-exit"); return no_overlap(); } let overlaps = tcx.infer_ctxt().enter(|infcx| { let selcx = &mut SelectionContext::intercrate(&infcx); overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).is_some() }); if !overlaps { return no_overlap(); } // In the case where we detect an error, run the check again, but // this time tracking intercrate ambuiguity causes for better // diagnostics. (These take time and can lead to false errors.) tcx.infer_ctxt().enter(|infcx| { let selcx = &mut SelectionContext::intercrate(&infcx); selcx.enable_tracking_intercrate_ambiguity_causes(); on_overlap( overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).unwrap(), ) }) } fn with_fresh_ty_vars<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, param_env: ty::ParamEnv<'tcx>, impl_def_id: DefId, ) -> ty::ImplHeader<'tcx> { let tcx = selcx.tcx(); let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id); let header = ty::ImplHeader { impl_def_id, self_ty: tcx.type_of(impl_def_id).subst(tcx, impl_substs), trait_ref: tcx.impl_trait_ref(impl_def_id).subst(tcx, impl_substs), predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates, }; let Normalized { value: mut header, obligations } = traits::normalize(selcx, param_env, ObligationCause::dummy(), header); header.predicates.extend(obligations.into_iter().map(|o| o.predicate)); header } /// Can both impl `a` and impl `b` be satisfied by a common type (including /// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls. fn overlap<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, skip_leak_check: SkipLeakCheck, impl1_def_id: DefId, impl2_def_id: DefId, overlap_mode: OverlapMode, ) -> Option> { debug!( "overlap(impl1_def_id={:?}, impl2_def_id={:?}, overlap_mode={:?})", impl1_def_id, impl2_def_id, overlap_mode ); selcx.infcx().probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| { overlap_within_probe(selcx, impl1_def_id, impl2_def_id, overlap_mode, snapshot) }) } fn overlap_within_probe<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, impl1_def_id: DefId, impl2_def_id: DefId, overlap_mode: OverlapMode, snapshot: &CombinedSnapshot<'_, 'tcx>, ) -> Option> { let infcx = selcx.infcx(); if overlap_mode.use_negative_impl() { if negative_impl(selcx, impl1_def_id, impl2_def_id) || negative_impl(selcx, impl2_def_id, impl1_def_id) { return None; } } // For the purposes of this check, we don't bring any placeholder // types into scope; instead, we replace the generic types with // fresh type variables, and hence we do our evaluations in an // empty environment. let param_env = ty::ParamEnv::empty(); let impl1_header = with_fresh_ty_vars(selcx, param_env, impl1_def_id); let impl2_header = with_fresh_ty_vars(selcx, param_env, impl2_def_id); let obligations = equate_impl_headers(selcx, &impl1_header, &impl2_header)?; debug!("overlap: unification check succeeded"); if overlap_mode.use_implicit_negative() { if implicit_negative(selcx, param_env, &impl1_header, impl2_header, obligations) { return None; } } // We disable the leak when when creating the `snapshot` by using // `infcx.probe_maybe_disable_leak_check`. if infcx.leak_check(true, snapshot).is_err() { debug!("overlap: leak check failed"); return None; } let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes(); debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes); let involves_placeholder = matches!(selcx.infcx().region_constraints_added_in_snapshot(snapshot), Some(true)); let impl_header = selcx.infcx().resolve_vars_if_possible(impl1_header); Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder }) } fn equate_impl_headers<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, impl1_header: &ty::ImplHeader<'tcx>, impl2_header: &ty::ImplHeader<'tcx>, ) -> Option> { // Do `a` and `b` unify? If not, no overlap. debug!("equate_impl_headers(impl1_header={:?}, impl2_header={:?}", impl1_header, impl2_header); selcx .infcx() .at(&ObligationCause::dummy(), ty::ParamEnv::empty()) .eq_impl_headers(impl1_header, impl2_header) .map(|infer_ok| infer_ok.obligations) .ok() } /// Given impl1 and impl2 check if both impls can be satisfied by a common type (including /// where-clauses) If so, return false, otherwise return true, they are disjoint. fn implicit_negative<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, param_env: ty::ParamEnv<'tcx>, impl1_header: &ty::ImplHeader<'tcx>, impl2_header: ty::ImplHeader<'tcx>, obligations: PredicateObligations<'tcx>, ) -> bool { // There's no overlap if obligations are unsatisfiable or if the obligation negated is // satisfied. // // For example, given these two impl headers: // // `impl<'a> From<&'a str> for Box` // `impl From for Box where E: Error` // // So we have: // // `Box: From<&'?a str>` // `Box: From` // // After equating the two headers: // // `Box = Box` // So, `?E = &'?a str` and then given the where clause `&'?a str: Error`. // // If the obligation `&'?a str: Error` holds, it means that there's overlap. If that doesn't // hold we need to check if `&'?a str: !Error` holds, if doesn't hold there's overlap because // at some point an impl for `&'?a str: Error` could be added. debug!( "implicit_negative(impl1_header={:?}, impl2_header={:?}, obligations={:?})", impl1_header, impl2_header, obligations ); let infcx = selcx.infcx(); let opt_failing_obligation = impl1_header .predicates .iter() .copied() .chain(impl2_header.predicates) .map(|p| infcx.resolve_vars_if_possible(p)) .map(|p| Obligation { cause: ObligationCause::dummy(), param_env, recursion_depth: 0, predicate: p, }) .chain(obligations) .find(|o| !selcx.predicate_may_hold_fatal(o)); if let Some(failing_obligation) = opt_failing_obligation { debug!("overlap: obligation unsatisfiable {:?}", failing_obligation); true } else { false } } /// Given impl1 and impl2 check if both impls are never satisfied by a common type (including /// where-clauses) If so, return true, they are disjoint and false otherwise. fn negative_impl<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, impl1_def_id: DefId, impl2_def_id: DefId, ) -> bool { debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id); let tcx = selcx.infcx().tcx; // create a parameter environment corresponding to a (placeholder) instantiation of impl1 let impl1_env = tcx.param_env(impl1_def_id); let impl1_trait_ref = tcx.impl_trait_ref(impl1_def_id).unwrap(); // Create an infcx, taking the predicates of impl1 as assumptions: tcx.infer_ctxt().enter(|infcx| { // Normalize the trait reference. The WF rules ought to ensure // that this always succeeds. let impl1_trait_ref = match traits::fully_normalize( &infcx, FulfillmentContext::new(), ObligationCause::dummy(), impl1_env, impl1_trait_ref, ) { Ok(impl1_trait_ref) => impl1_trait_ref, Err(err) => { bug!("failed to fully normalize {:?}: {:?}", impl1_trait_ref, err); } }; // Attempt to prove that impl2 applies, given all of the above. let selcx = &mut SelectionContext::new(&infcx); let impl2_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl2_def_id); let (impl2_trait_ref, obligations) = impl_trait_ref_and_oblig(selcx, impl1_env, impl2_def_id, impl2_substs); // do the impls unify? If not, not disjoint. let Ok(InferOk { obligations: more_obligations, .. }) = infcx .at(&ObligationCause::dummy(), impl1_env) .eq(impl1_trait_ref, impl2_trait_ref) else { debug!( "explicit_disjoint: {:?} does not unify with {:?}", impl1_trait_ref, impl2_trait_ref ); return false; }; let opt_failing_obligation = obligations .into_iter() .chain(more_obligations) .find(|o| negative_impl_exists(selcx, impl1_env, impl1_def_id, o)); if let Some(failing_obligation) = opt_failing_obligation { debug!("overlap: obligation unsatisfiable {:?}", failing_obligation); true } else { false } }) } #[instrument(level = "debug", skip(selcx))] fn negative_impl_exists<'cx, 'tcx>( selcx: &SelectionContext<'cx, 'tcx>, param_env: ty::ParamEnv<'tcx>, region_context: DefId, o: &PredicateObligation<'tcx>, ) -> bool { let infcx = &selcx.infcx().fork(); let tcx = infcx.tcx; let super_obligations = util::elaborate_predicates(tcx, iter::once(o.predicate)); for o in iter::once(o.clone()).chain(super_obligations) { if let Some(o) = o.flip_polarity(tcx) { let mut fulfillment_cx = FulfillmentContext::new(); fulfillment_cx.register_predicate_obligation(infcx, o); let errors = fulfillment_cx.select_all_or_error(infcx); if !errors.is_empty() { continue; } let mut outlives_env = OutlivesEnvironment::new(param_env); // FIXME -- add "assumed to be well formed" types into the `outlives_env` // "Save" the accumulated implied bounds into the outlives environment // (due to the FIXME above, there aren't any, but this step is still needed). // The "body id" is given as `CRATE_HIR_ID`, which is the same body-id used // by the "dummy" causes elsewhere (body-id is only relevant when checking // function bodies with closures). outlives_env.save_implied_bounds(CRATE_HIR_ID); infcx.process_registered_region_obligations( outlives_env.region_bound_pairs_map(), Some(tcx.lifetimes.re_root_empty), param_env, ); let errors = infcx.resolve_regions(region_context, &outlives_env, RegionckMode::default()); if !errors.is_empty() { continue; } return true; } } false } pub fn trait_ref_is_knowable<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, ) -> Option { debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref); if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() { // A downstream or cousin crate is allowed to implement some // substitution of this trait-ref. return Some(Conflict::Downstream); } if trait_ref_is_local_or_fundamental(tcx, trait_ref) { // This is a local or fundamental trait, so future-compatibility // is no concern. We know that downstream/cousin crates are not // allowed to implement a substitution of this trait ref, which // means impls could only come from dependencies of this crate, // which we already know about. return None; } // This is a remote non-fundamental trait, so if another crate // can be the "final owner" of a substitution of this trait-ref, // they are allowed to implement it future-compatibly. // // However, if we are a final owner, then nobody else can be, // and if we are an intermediate owner, then we don't care // about future-compatibility, which means that we're OK if // we are an owner. if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() { debug!("trait_ref_is_knowable: orphan check passed"); None } else { debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned"); Some(Conflict::Upstream) } } pub fn trait_ref_is_local_or_fundamental<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, ) -> bool { trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental) } pub enum OrphanCheckErr<'tcx> { NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>), UncoveredTy(Ty<'tcx>, Option>), } /// Checks the coherence orphan rules. `impl_def_id` should be the /// `DefId` of a trait impl. To pass, either the trait must be local, or else /// two conditions must be satisfied: /// /// 1. All type parameters in `Self` must be "covered" by some local type constructor. /// 2. Some local type must appear in `Self`. pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> { debug!("orphan_check({:?})", impl_def_id); // We only except this routine to be invoked on implementations // of a trait, not inherent implementations. let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap(); debug!("orphan_check: trait_ref={:?}", trait_ref); // If the *trait* is local to the crate, ok. if trait_ref.def_id.is_local() { debug!("trait {:?} is local to current crate", trait_ref.def_id); return Ok(()); } orphan_check_trait_ref(tcx, trait_ref, InCrate::Local) } /// Checks whether a trait-ref is potentially implementable by a crate. /// /// The current rule is that a trait-ref orphan checks in a crate C: /// /// 1. Order the parameters in the trait-ref in subst order - Self first, /// others linearly (e.g., `>` is U < V < W). /// 2. Of these type parameters, there is at least one type parameter /// in which, walking the type as a tree, you can reach a type local /// to C where all types in-between are fundamental types. Call the /// first such parameter the "local key parameter". /// - e.g., `Box` is OK, because you can visit LocalType /// going through `Box`, which is fundamental. /// - similarly, `FundamentalPair, Box>` is OK for /// the same reason. /// - but (knowing that `Vec` is non-fundamental, and assuming it's /// not local), `Vec` is bad, because `Vec<->` is between /// the local type and the type parameter. /// 3. Before this local type, no generic type parameter of the impl must /// be reachable through fundamental types. /// - e.g. `impl Trait for Vec` is fine, as `Vec` is not fundamental. /// - while `impl Trait` results in an error, as `T` is /// reachable through the fundamental type `Box`. /// 4. Every type in the local key parameter not known in C, going /// through the parameter's type tree, must appear only as a subtree of /// a type local to C, with only fundamental types between the type /// local to C and the local key parameter. /// - e.g., `Vec>>` (or equivalently `Box>>`) /// is bad, because the only local type with `T` as a subtree is /// `LocalType`, and `Vec<->` is between it and the type parameter. /// - similarly, `FundamentalPair, T>` is bad, because /// the second occurrence of `T` is not a subtree of *any* local type. /// - however, `LocalType>` is OK, because `T` is a subtree of /// `LocalType>`, which is local and has no types between it and /// the type parameter. /// /// The orphan rules actually serve several different purposes: /// /// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where /// every type local to one crate is unknown in the other) can't implement /// the same trait-ref. This follows because it can be seen that no such /// type can orphan-check in 2 such crates. /// /// To check that a local impl follows the orphan rules, we check it in /// InCrate::Local mode, using type parameters for the "generic" types. /// /// 2. They ground negative reasoning for coherence. If a user wants to /// write both a conditional blanket impl and a specific impl, we need to /// make sure they do not overlap. For example, if we write /// ``` /// impl IntoIterator for Vec /// impl IntoIterator for T /// ``` /// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0. /// We can observe that this holds in the current crate, but we need to make /// sure this will also hold in all unknown crates (both "independent" crates, /// which we need for link-safety, and also child crates, because we don't want /// child crates to get error for impl conflicts in a *dependency*). /// /// For that, we only allow negative reasoning if, for every assignment to the /// inference variables, every unknown crate would get an orphan error if they /// try to implement this trait-ref. To check for this, we use InCrate::Remote /// mode. That is sound because we already know all the impls from known crates. /// /// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can /// add "non-blanket" impls without breaking negative reasoning in dependent /// crates. This is the "rebalancing coherence" (RFC 1023) restriction. /// /// For that, we only a allow crate to perform negative reasoning on /// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2). /// /// Because we never perform negative reasoning generically (coherence does /// not involve type parameters), this can be interpreted as doing the full /// orphan check (using InCrate::Local mode), substituting non-local known /// types for all inference variables. /// /// This allows for crates to future-compatibly add impls as long as they /// can't apply to types with a key parameter in a child crate - applying /// the rules, this basically means that every type parameter in the impl /// must appear behind a non-fundamental type (because this is not a /// type-system requirement, crate owners might also go for "semantic /// future-compatibility" involving things such as sealed traits, but /// the above requirement is sufficient, and is necessary in "open world" /// cases). /// /// Note that this function is never called for types that have both type /// parameters and inference variables. fn orphan_check_trait_ref<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, in_crate: InCrate, ) -> Result<(), OrphanCheckErr<'tcx>> { debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})", trait_ref, in_crate); if trait_ref.needs_infer() && trait_ref.needs_subst() { bug!( "can't orphan check a trait ref with both params and inference variables {:?}", trait_ref ); } // Given impl Trait for T0, an impl is valid only // if at least one of the following is true: // // - Trait is a local trait // (already checked in orphan_check prior to calling this function) // - All of // - At least one of the types T0..=Tn must be a local type. // Let Ti be the first such type. // - No uncovered type parameters P1..=Pn may appear in T0..Ti (excluding Ti) // fn uncover_fundamental_ty<'tcx>( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, in_crate: InCrate, ) -> Vec> { // FIXME: this is currently somewhat overly complicated, // but fixing this requires a more complicated refactor. if !contained_non_local_types(tcx, ty, in_crate).is_empty() { if let Some(inner_tys) = fundamental_ty_inner_tys(tcx, ty) { return inner_tys .flat_map(|ty| uncover_fundamental_ty(tcx, ty, in_crate)) .collect(); } } vec![ty] } let mut non_local_spans = vec![]; for (i, input_ty) in trait_ref .substs .types() .flat_map(|ty| uncover_fundamental_ty(tcx, ty, in_crate)) .enumerate() { debug!("orphan_check_trait_ref: check ty `{:?}`", input_ty); let non_local_tys = contained_non_local_types(tcx, input_ty, in_crate); if non_local_tys.is_empty() { debug!("orphan_check_trait_ref: ty_is_local `{:?}`", input_ty); return Ok(()); } else if let ty::Param(_) = input_ty.kind() { debug!("orphan_check_trait_ref: uncovered ty: `{:?}`", input_ty); let local_type = trait_ref .substs .types() .flat_map(|ty| uncover_fundamental_ty(tcx, ty, in_crate)) .find(|ty| ty_is_local_constructor(*ty, in_crate)); debug!("orphan_check_trait_ref: uncovered ty local_type: `{:?}`", local_type); return Err(OrphanCheckErr::UncoveredTy(input_ty, local_type)); } non_local_spans.extend(non_local_tys.into_iter().map(|input_ty| (input_ty, i == 0))); } // If we exit above loop, never found a local type. debug!("orphan_check_trait_ref: no local type"); Err(OrphanCheckErr::NonLocalInputType(non_local_spans)) } /// Returns a list of relevant non-local types for `ty`. /// /// This is just `ty` itself unless `ty` is `#[fundamental]`, /// in which case we recursively look into this type. /// /// If `ty` is local itself, this method returns an empty `Vec`. /// /// # Examples /// /// - `u32` is not local, so this returns `[u32]`. /// - for `Foo`, where `Foo` is a local type, this returns `[]`. /// - `&mut u32` returns `[u32]`, as `&mut` is a fundamental type, similar to `Box`. /// - `Box>` returns `[]`, as `Box` is a fundamental type and `Foo` is local. fn contained_non_local_types<'tcx>( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, in_crate: InCrate, ) -> Vec> { if ty_is_local_constructor(ty, in_crate) { Vec::new() } else { match fundamental_ty_inner_tys(tcx, ty) { Some(inner_tys) => { inner_tys.flat_map(|ty| contained_non_local_types(tcx, ty, in_crate)).collect() } None => vec![ty], } } } /// For `#[fundamental]` ADTs and `&T` / `&mut T`, returns `Some` with the /// type parameters of the ADT, or `T`, respectively. For non-fundamental /// types, returns `None`. fn fundamental_ty_inner_tys<'tcx>( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, ) -> Option>> { let (first_ty, rest_tys) = match *ty.kind() { ty::Ref(_, ty, _) => (ty, ty::subst::InternalSubsts::empty().types()), ty::Adt(def, substs) if def.is_fundamental() => { let mut types = substs.types(); // FIXME(eddyb) actually validate `#[fundamental]` up-front. match types.next() { None => { tcx.sess.span_err( tcx.def_span(def.did()), "`#[fundamental]` requires at least one type parameter", ); return None; } Some(first_ty) => (first_ty, types), } } _ => return None, }; Some(iter::once(first_ty).chain(rest_tys)) } fn def_id_is_local(def_id: DefId, in_crate: InCrate) -> bool { match in_crate { // The type is local to *this* crate - it will not be // local in any other crate. InCrate::Remote => false, InCrate::Local => def_id.is_local(), } } fn ty_is_local_constructor(ty: Ty<'_>, in_crate: InCrate) -> bool { debug!("ty_is_local_constructor({:?})", ty); match *ty.kind() { ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Str | ty::FnDef(..) | ty::FnPtr(_) | ty::Array(..) | ty::Slice(..) | ty::RawPtr(..) | ty::Ref(..) | ty::Never | ty::Tuple(..) | ty::Param(..) | ty::Projection(..) => false, ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match in_crate { InCrate::Local => false, // The inference variable might be unified with a local // type in that remote crate. InCrate::Remote => true, }, ty::Adt(def, _) => def_id_is_local(def.did(), in_crate), ty::Foreign(did) => def_id_is_local(did, in_crate), ty::Opaque(..) => { // This merits some explanation. // Normally, opaque types are not involed when performing // coherence checking, since it is illegal to directly // implement a trait on an opaque type. However, we might // end up looking at an opaque type during coherence checking // if an opaque type gets used within another type (e.g. as // a type parameter). This requires us to decide whether or // not an opaque type should be considered 'local' or not. // // We choose to treat all opaque types as non-local, even // those that appear within the same crate. This seems // somewhat surprising at first, but makes sense when // you consider that opaque types are supposed to hide // the underlying type *within the same crate*. When an // opaque type is used from outside the module // where it is declared, it should be impossible to observe // anything about it other than the traits that it implements. // // The alternative would be to look at the underlying type // to determine whether or not the opaque type itself should // be considered local. However, this could make it a breaking change // to switch the underlying ('defining') type from a local type // to a remote type. This would violate the rule that opaque // types should be completely opaque apart from the traits // that they implement, so we don't use this behavior. false } ty::Closure(..) => { // Similar to the `Opaque` case (#83613). false } ty::Dynamic(ref tt, ..) => { if let Some(principal) = tt.principal() { def_id_is_local(principal.def_id(), in_crate) } else { false } } ty::Error(_) => true, ty::Generator(..) | ty::GeneratorWitness(..) => { bug!("ty_is_local invoked on unexpected type: {:?}", ty) } } }