#![unstable(issue = "0", feature = "windows_stdio")] use char::decode_utf16; use cmp; use io; use ptr; use str; use sys::c; use sys::cvt; use sys::handle::Handle; // Don't cache handles but get them fresh for every read/write. This allows us to track changes to // the value over time (such as if a process calls `SetStdHandle` while it's running). See #40490. pub struct Stdin { surrogate: u16, } pub struct Stdout; pub struct Stderr; // Apparently Windows doesn't handle large reads on stdin or writes to stdout/stderr well (see // #13304 for details). // // From MSDN (2011): "The storage for this buffer is allocated from a shared heap for the // process that is 64 KB in size. The maximum size of the buffer will depend on heap usage." // // We choose the cap at 8 KiB because libuv does the same, and it seems to be acceptable so far. const MAX_BUFFER_SIZE: usize = 8192; // The standard buffer size of BufReader for Stdin should be able to hold 3x more bytes than there // are `u16`'s in MAX_BUFFER_SIZE. This ensures the read data can always be completely decoded from // UTF-16 to UTF-8. pub const STDIN_BUF_SIZE: usize = MAX_BUFFER_SIZE / 2 * 3; pub fn get_handle(handle_id: c::DWORD) -> io::Result { let handle = unsafe { c::GetStdHandle(handle_id) }; if handle == c::INVALID_HANDLE_VALUE { Err(io::Error::last_os_error()) } else if handle.is_null() { Err(io::Error::from_raw_os_error(c::ERROR_INVALID_HANDLE as i32)) } else { Ok(handle) } } fn is_console(handle: c::HANDLE) -> bool { // `GetConsoleMode` will return false (0) if this is a pipe (we don't care about the reported // mode). This will only detect Windows Console, not other terminals connected to a pipe like // MSYS. Which is exactly what we need, as only Windows Console needs a conversion to UTF-16. let mut mode = 0; unsafe { c::GetConsoleMode(handle, &mut mode) != 0 } } fn write(handle_id: c::DWORD, data: &[u8]) -> io::Result { let handle = get_handle(handle_id)?; if !is_console(handle) { let handle = Handle::new(handle); let ret = handle.write(data); handle.into_raw(); // Don't close the handle return ret; } // As the console is meant for presenting text, we assume bytes of `data` come from a string // and are encoded as UTF-8, which needs to be encoded as UTF-16. // // If the data is not valid UTF-8 we write out as many bytes as are valid. // Only when there are no valid bytes (which will happen on the next call), return an error. let len = cmp::min(data.len(), MAX_BUFFER_SIZE / 2); let utf8 = match str::from_utf8(&data[..len]) { Ok(s) => s, Err(ref e) if e.valid_up_to() == 0 => { return Err(io::Error::new(io::ErrorKind::InvalidData, "Windows stdio in console mode does not support writing non-UTF-8 byte sequences")) }, Err(e) => str::from_utf8(&data[..e.valid_up_to()]).unwrap(), }; let mut utf16 = [0u16; MAX_BUFFER_SIZE / 2]; let mut len_utf16 = 0; for (chr, dest) in utf8.encode_utf16().zip(utf16.iter_mut()) { *dest = chr; len_utf16 += 1; } let utf16 = &utf16[..len_utf16]; let mut written = write_u16s(handle, &utf16)?; // Figure out how many bytes of as UTF-8 were written away as UTF-16. if written == utf16.len() { Ok(utf8.len()) } else { // Make sure we didn't end up writing only half of a surrogate pair (even though the chance // is tiny). Because it is not possible for user code to re-slice `data` in such a way that // a missing surrogate can be produced (and also because of the UTF-8 validation above), // write the missing surrogate out now. // Buffering it would mean we have to lie about the number of bytes written. let first_char_remaining = utf16[written]; if first_char_remaining >= 0xDCEE && first_char_remaining <= 0xDFFF { // low surrogate // We just hope this works, and give up otherwise let _ = write_u16s(handle, &utf16[written..written+1]); written += 1; } // Calculate the number of bytes of `utf8` that were actually written. let mut count = 0; for ch in utf16[..written].iter() { count += match ch { 0x0000 ..= 0x007F => 1, 0x0080 ..= 0x07FF => 2, 0xDCEE ..= 0xDFFF => 1, // Low surrogate. We already counted 3 bytes for the other. _ => 3, }; } debug_assert!(String::from_utf16(&utf16[..written]).unwrap() == utf8[..count]); Ok(count) } } fn write_u16s(handle: c::HANDLE, data: &[u16]) -> io::Result { let mut written = 0; cvt(unsafe { c::WriteConsoleW(handle, data.as_ptr() as c::LPCVOID, data.len() as u32, &mut written, ptr::null_mut()) })?; Ok(written as usize) } impl Stdin { pub fn new() -> io::Result { Ok(Stdin { surrogate: 0 }) } } impl io::Read for Stdin { fn read(&mut self, buf: &mut [u8]) -> io::Result { let handle = get_handle(c::STD_INPUT_HANDLE)?; if !is_console(handle) { let handle = Handle::new(handle); let ret = handle.read(buf); handle.into_raw(); // Don't close the handle return ret; } if buf.len() == 0 { return Ok(0); } else if buf.len() < 4 { return Err(io::Error::new(io::ErrorKind::InvalidInput, "Windows stdin in console mode does not support a buffer too small to \ guarantee holding one arbitrary UTF-8 character (4 bytes)")) } let mut utf16_buf = [0u16; MAX_BUFFER_SIZE / 2]; // In the worst case, an UTF-8 string can take 3 bytes for every `u16` of an UTF-16. So // we can read at most a third of `buf.len()` chars and uphold the guarantee no data gets // lost. let amount = cmp::min(buf.len() / 3, utf16_buf.len()); let read = read_u16s_fixup_surrogates(handle, &mut utf16_buf, amount, &mut self.surrogate)?; utf16_to_utf8(&utf16_buf[..read], buf) } } // We assume that if the last `u16` is an unpaired surrogate they got sliced apart by our // buffer size, and keep it around for the next read hoping to put them together. // This is a best effort, and may not work if we are not the only reader on Stdin. fn read_u16s_fixup_surrogates(handle: c::HANDLE, buf: &mut [u16], mut amount: usize, surrogate: &mut u16) -> io::Result { // Insert possibly remaining unpaired surrogate from last read. let mut start = 0; if *surrogate != 0 { buf[0] = *surrogate; *surrogate = 0; start = 1; if amount == 1 { // Special case: `Stdin::read` guarantees we can always read at least one new `u16` // and combine it with an unpaired surrogate, because the UTF-8 buffer is at least // 4 bytes. amount = 2; } } let mut amount = read_u16s(handle, &mut buf[start..amount])? + start; if amount > 0 { let last_char = buf[amount - 1]; if last_char >= 0xD800 && last_char <= 0xDBFF { // high surrogate *surrogate = last_char; amount -= 1; } } Ok(amount) } fn read_u16s(handle: c::HANDLE, buf: &mut [u16]) -> io::Result { // Configure the `pInputControl` parameter to not only return on `\r\n` but also Ctrl-Z, the // traditional DOS method to indicate end of character stream / user input (SUB). // See #38274 and https://stackoverflow.com/questions/43836040/win-api-readconsole. const CTRL_Z: u16 = 0x1A; const CTRL_Z_MASK: c::ULONG = 1 << CTRL_Z; let mut input_control = c::CONSOLE_READCONSOLE_CONTROL { nLength: ::mem::size_of::() as c::ULONG, nInitialChars: 0, dwCtrlWakeupMask: CTRL_Z_MASK, dwControlKeyState: 0, }; let mut amount = 0; cvt(unsafe { c::ReadConsoleW(handle, buf.as_mut_ptr() as c::LPVOID, buf.len() as u32, &mut amount, &mut input_control as c::PCONSOLE_READCONSOLE_CONTROL) })?; if amount > 0 && buf[amount as usize - 1] == CTRL_Z { amount -= 1; } Ok(amount as usize) } #[allow(unused)] fn utf16_to_utf8(utf16: &[u16], utf8: &mut [u8]) -> io::Result { let mut written = 0; for chr in decode_utf16(utf16.iter().cloned()) { match chr { Ok(chr) => { chr.encode_utf8(&mut utf8[written..]); written += chr.len_utf8(); } Err(_) => { // We can't really do any better than forget all data and return an error. return Err(io::Error::new(io::ErrorKind::InvalidData, "Windows stdin in console mode does not support non-UTF-16 input; \ encountered unpaired surrogate")) } } } Ok(written) } impl Stdout { pub fn new() -> io::Result { Ok(Stdout) } } impl io::Write for Stdout { fn write(&mut self, buf: &[u8]) -> io::Result { write(c::STD_OUTPUT_HANDLE, buf) } fn flush(&mut self) -> io::Result<()> { Ok(()) } } impl Stderr { pub fn new() -> io::Result { Ok(Stderr) } } impl io::Write for Stderr { fn write(&mut self, buf: &[u8]) -> io::Result { write(c::STD_ERROR_HANDLE, buf) } fn flush(&mut self) -> io::Result<()> { Ok(()) } } pub fn is_ebadf(err: &io::Error) -> bool { err.raw_os_error() == Some(c::ERROR_INVALID_HANDLE as i32) } pub fn panic_output() -> Option { io::stderr_raw().ok() }