//! Confirmation. //! //! Confirmation unifies the output type parameters of the trait //! with the values found in the obligation, possibly yielding a //! type error. See the [rustc dev guide] for more details. //! //! [rustc dev guide]: //! https://rustc-dev-guide.rust-lang.org/traits/resolution.html#confirmation use rustc_ast::Mutability; use rustc_data_structures::stack::ensure_sufficient_stack; use rustc_hir::lang_items::LangItem; use rustc_infer::infer::LateBoundRegionConversionTime::HigherRankedType; use rustc_infer::infer::{DefineOpaqueTypes, InferOk}; use rustc_middle::traits::{BuiltinImplSource, SelectionOutputTypeParameterMismatch}; use rustc_middle::ty::{ self, GenericArgs, GenericArgsRef, GenericParamDefKind, ToPolyTraitRef, ToPredicate, TraitPredicate, Ty, TyCtxt, TypeVisitableExt, }; use rustc_span::def_id::DefId; use crate::traits::project::{normalize_with_depth, normalize_with_depth_to}; use crate::traits::util::{self, closure_trait_ref_and_return_type}; use crate::traits::vtable::{ count_own_vtable_entries, prepare_vtable_segments, vtable_trait_first_method_offset, VtblSegment, }; use crate::traits::{ BuiltinDerivedObligation, ImplDerivedObligation, ImplDerivedObligationCause, ImplSource, ImplSourceUserDefinedData, Normalized, Obligation, ObligationCause, OutputTypeParameterMismatch, PolyTraitObligation, PredicateObligation, Selection, SelectionError, TraitNotObjectSafe, Unimplemented, }; use super::BuiltinImplConditions; use super::SelectionCandidate::{self, *}; use super::SelectionContext; use std::iter; use std::ops::ControlFlow; impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> { #[instrument(level = "debug", skip(self))] pub(super) fn confirm_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, candidate: SelectionCandidate<'tcx>, ) -> Result, SelectionError<'tcx>> { let mut impl_src = match candidate { BuiltinCandidate { has_nested } => { let data = self.confirm_builtin_candidate(obligation, has_nested); ImplSource::Builtin(BuiltinImplSource::Misc, data) } TransmutabilityCandidate => { let data = self.confirm_transmutability_candidate(obligation)?; ImplSource::Builtin(BuiltinImplSource::Misc, data) } ParamCandidate(param) => { let obligations = self.confirm_param_candidate(obligation, param.map_bound(|t| t.trait_ref)); ImplSource::Param(obligations) } ImplCandidate(impl_def_id) => { ImplSource::UserDefined(self.confirm_impl_candidate(obligation, impl_def_id)) } AutoImplCandidate => { let data = self.confirm_auto_impl_candidate(obligation)?; ImplSource::Builtin(BuiltinImplSource::Misc, data) } ProjectionCandidate(idx, _) => { let obligations = self.confirm_projection_candidate(obligation, idx)?; ImplSource::Param(obligations) } ObjectCandidate(idx) => self.confirm_object_candidate(obligation, idx)?, ClosureCandidate { .. } => { let vtable_closure = self.confirm_closure_candidate(obligation)?; ImplSource::Builtin(BuiltinImplSource::Misc, vtable_closure) } CoroutineCandidate => { let vtable_generator = self.confirm_generator_candidate(obligation)?; ImplSource::Builtin(BuiltinImplSource::Misc, vtable_generator) } FutureCandidate => { let vtable_future = self.confirm_future_candidate(obligation)?; ImplSource::Builtin(BuiltinImplSource::Misc, vtable_future) } FnPointerCandidate { is_const } => { let data = self.confirm_fn_pointer_candidate(obligation, is_const)?; ImplSource::Builtin(BuiltinImplSource::Misc, data) } TraitAliasCandidate => { let data = self.confirm_trait_alias_candidate(obligation); ImplSource::Builtin(BuiltinImplSource::Misc, data) } BuiltinObjectCandidate => { // This indicates something like `Trait + Send: Send`. In this case, we know that // this holds because that's what the object type is telling us, and there's really // no additional obligations to prove and no types in particular to unify, etc. ImplSource::Builtin(BuiltinImplSource::Misc, Vec::new()) } BuiltinUnsizeCandidate => self.confirm_builtin_unsize_candidate(obligation)?, TraitUpcastingUnsizeCandidate(idx) => { self.confirm_trait_upcasting_unsize_candidate(obligation, idx)? } ConstDestructCandidate(def_id) => { let data = self.confirm_const_destruct_candidate(obligation, def_id)?; ImplSource::Builtin(BuiltinImplSource::Misc, data) } }; // The obligations returned by confirmation are recursively evaluated // so we need to make sure they have the correct depth. for subobligation in impl_src.borrow_nested_obligations_mut() { subobligation.set_depth_from_parent(obligation.recursion_depth); } Ok(impl_src) } fn confirm_projection_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, idx: usize, ) -> Result>, SelectionError<'tcx>> { let tcx = self.tcx(); let trait_predicate = self.infcx.shallow_resolve(obligation.predicate); let placeholder_trait_predicate = self.infcx.instantiate_binder_with_placeholders(trait_predicate).trait_ref; let placeholder_self_ty = placeholder_trait_predicate.self_ty(); let placeholder_trait_predicate = ty::Binder::dummy(placeholder_trait_predicate); let (def_id, args) = match *placeholder_self_ty.kind() { // Excluding IATs and type aliases here as they don't have meaningful item bounds. ty::Alias(ty::Projection | ty::Opaque, ty::AliasTy { def_id, args, .. }) => { (def_id, args) } _ => bug!("projection candidate for unexpected type: {:?}", placeholder_self_ty), }; let candidate_predicate = tcx.item_bounds(def_id).map_bound(|i| i[idx]).instantiate(tcx, args); let candidate = candidate_predicate .as_trait_clause() .expect("projection candidate is not a trait predicate") .map_bound(|t| t.trait_ref); let mut obligations = Vec::new(); let candidate = normalize_with_depth_to( self, obligation.param_env, obligation.cause.clone(), obligation.recursion_depth + 1, candidate, &mut obligations, ); obligations.extend(self.infcx.commit_if_ok(|_| { self.infcx .at(&obligation.cause, obligation.param_env) .sup(DefineOpaqueTypes::No, placeholder_trait_predicate, candidate) .map(|InferOk { obligations, .. }| obligations) .map_err(|_| Unimplemented) })?); if let ty::Alias(ty::Projection, ..) = placeholder_self_ty.kind() { let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, args); for (predicate, _) in predicates { let normalized = normalize_with_depth_to( self, obligation.param_env, obligation.cause.clone(), obligation.recursion_depth + 1, predicate, &mut obligations, ); obligations.push(Obligation::with_depth( self.tcx(), obligation.cause.clone(), obligation.recursion_depth + 1, obligation.param_env, normalized, )); } } Ok(obligations) } fn confirm_param_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, param: ty::PolyTraitRef<'tcx>, ) -> Vec> { debug!(?obligation, ?param, "confirm_param_candidate"); // During evaluation, we already checked that this // where-clause trait-ref could be unified with the obligation // trait-ref. Repeat that unification now without any // transactional boundary; it should not fail. match self.match_where_clause_trait_ref(obligation, param) { Ok(obligations) => obligations, Err(()) => { bug!( "Where clause `{:?}` was applicable to `{:?}` but now is not", param, obligation ); } } } fn confirm_builtin_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, has_nested: bool, ) -> Vec> { debug!(?obligation, ?has_nested, "confirm_builtin_candidate"); let lang_items = self.tcx().lang_items(); let obligations = if has_nested { let trait_def = obligation.predicate.def_id(); let conditions = if Some(trait_def) == lang_items.sized_trait() { self.sized_conditions(obligation) } else if Some(trait_def) == lang_items.copy_trait() { self.copy_clone_conditions(obligation) } else if Some(trait_def) == lang_items.clone_trait() { self.copy_clone_conditions(obligation) } else { bug!("unexpected builtin trait {:?}", trait_def) }; let BuiltinImplConditions::Where(nested) = conditions else { bug!("obligation {:?} had matched a builtin impl but now doesn't", obligation); }; let cause = obligation.derived_cause(BuiltinDerivedObligation); self.collect_predicates_for_types( obligation.param_env, cause, obligation.recursion_depth + 1, trait_def, nested, ) } else { vec![] }; debug!(?obligations); obligations } #[instrument(level = "debug", skip(self))] fn confirm_transmutability_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, ) -> Result>, SelectionError<'tcx>> { use rustc_transmute::{Answer, Condition}; #[instrument(level = "debug", skip(tcx, obligation, predicate))] fn flatten_answer_tree<'tcx>( tcx: TyCtxt<'tcx>, obligation: &PolyTraitObligation<'tcx>, predicate: TraitPredicate<'tcx>, cond: Condition>, ) -> Vec> { match cond { // FIXME(bryangarza): Add separate `IfAny` case, instead of treating as `IfAll` // Not possible until the trait solver supports disjunctions of obligations Condition::IfAll(conds) | Condition::IfAny(conds) => conds .into_iter() .flat_map(|cond| flatten_answer_tree(tcx, obligation, predicate, cond)) .collect(), Condition::IfTransmutable { src, dst } => { let trait_def_id = obligation.predicate.def_id(); let scope = predicate.trait_ref.args.type_at(2); let assume_const = predicate.trait_ref.args.const_at(3); let make_obl = |from_ty, to_ty| { let trait_ref1 = ty::TraitRef::new( tcx, trait_def_id, [ ty::GenericArg::from(to_ty), ty::GenericArg::from(from_ty), ty::GenericArg::from(scope), ty::GenericArg::from(assume_const), ], ); Obligation::with_depth( tcx, obligation.cause.clone(), obligation.recursion_depth + 1, obligation.param_env, trait_ref1, ) }; // If Dst is mutable, check bidirectionally. // For example, transmuting bool -> u8 is OK as long as you can't update that u8 // to be > 1, because you could later transmute the u8 back to a bool and get UB. match dst.mutability { Mutability::Not => vec![make_obl(src.ty, dst.ty)], Mutability::Mut => vec![make_obl(src.ty, dst.ty), make_obl(dst.ty, src.ty)], } } } } // We erase regions here because transmutability calls layout queries, // which does not handle inference regions and doesn't particularly // care about other regions. Erasing late-bound regions is equivalent // to instantiating the binder with placeholders then erasing those // placeholder regions. let predicate = self.tcx().erase_regions(self.tcx().erase_late_bound_regions(obligation.predicate)); let Some(assume) = rustc_transmute::Assume::from_const( self.infcx.tcx, obligation.param_env, predicate.trait_ref.args.const_at(3), ) else { return Err(Unimplemented); }; let dst = predicate.trait_ref.args.type_at(0); let src = predicate.trait_ref.args.type_at(1); debug!(?src, ?dst); let mut transmute_env = rustc_transmute::TransmuteTypeEnv::new(self.infcx); let maybe_transmutable = transmute_env.is_transmutable( obligation.cause.clone(), rustc_transmute::Types { dst, src }, predicate.trait_ref.args.type_at(2), assume, ); let fully_flattened = match maybe_transmutable { Answer::No(_) => Err(Unimplemented)?, Answer::If(cond) => flatten_answer_tree(self.tcx(), obligation, predicate, cond), Answer::Yes => vec![], }; debug!(?fully_flattened); Ok(fully_flattened) } /// This handles the case where an `auto trait Foo` impl is being used. /// The idea is that the impl applies to `X : Foo` if the following conditions are met: /// /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds. fn confirm_auto_impl_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, ) -> Result>, SelectionError<'tcx>> { debug!(?obligation, "confirm_auto_impl_candidate"); let self_ty = self.infcx.shallow_resolve(obligation.predicate.self_ty()); let types = self.constituent_types_for_ty(self_ty)?; Ok(self.vtable_auto_impl(obligation, obligation.predicate.def_id(), types)) } /// See `confirm_auto_impl_candidate`. fn vtable_auto_impl( &mut self, obligation: &PolyTraitObligation<'tcx>, trait_def_id: DefId, nested: ty::Binder<'tcx, Vec>>, ) -> Vec> { debug!(?nested, "vtable_auto_impl"); ensure_sufficient_stack(|| { let cause = obligation.derived_cause(BuiltinDerivedObligation); let poly_trait_ref = obligation.predicate.to_poly_trait_ref(); let trait_ref = self.infcx.instantiate_binder_with_placeholders(poly_trait_ref); let trait_obligations: Vec> = self.impl_or_trait_obligations( &cause, obligation.recursion_depth + 1, obligation.param_env, trait_def_id, &trait_ref.args, obligation.predicate, ); let mut obligations = self.collect_predicates_for_types( obligation.param_env, cause, obligation.recursion_depth + 1, trait_def_id, nested, ); // Adds the predicates from the trait. Note that this contains a `Self: Trait` // predicate as usual. It won't have any effect since auto traits are coinductive. obligations.extend(trait_obligations); debug!(?obligations, "vtable_auto_impl"); obligations }) } fn confirm_impl_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, impl_def_id: DefId, ) -> ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>> { debug!(?obligation, ?impl_def_id, "confirm_impl_candidate"); // First, create the substitutions by matching the impl again, // this time not in a probe. let args = self.rematch_impl(impl_def_id, obligation); debug!(?args, "impl args"); ensure_sufficient_stack(|| { self.vtable_impl( impl_def_id, args, &obligation.cause, obligation.recursion_depth + 1, obligation.param_env, obligation.predicate, ) }) } fn vtable_impl( &mut self, impl_def_id: DefId, args: Normalized<'tcx, GenericArgsRef<'tcx>>, cause: &ObligationCause<'tcx>, recursion_depth: usize, param_env: ty::ParamEnv<'tcx>, parent_trait_pred: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>, ) -> ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>> { debug!(?impl_def_id, ?args, ?recursion_depth, "vtable_impl"); let mut impl_obligations = self.impl_or_trait_obligations( cause, recursion_depth, param_env, impl_def_id, &args.value, parent_trait_pred, ); debug!(?impl_obligations, "vtable_impl"); // Because of RFC447, the impl-trait-ref and obligations // are sufficient to determine the impl args, without // relying on projections in the impl-trait-ref. // // e.g., `impl> Foo<::T> for V` impl_obligations.extend(args.obligations); ImplSourceUserDefinedData { impl_def_id, args: args.value, nested: impl_obligations } } fn confirm_object_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, index: usize, ) -> Result>, SelectionError<'tcx>> { let tcx = self.tcx(); debug!(?obligation, ?index, "confirm_object_candidate"); let trait_predicate = self.infcx.instantiate_binder_with_placeholders(obligation.predicate); let self_ty = self.infcx.shallow_resolve(trait_predicate.self_ty()); let obligation_trait_ref = ty::Binder::dummy(trait_predicate.trait_ref); let ty::Dynamic(data, ..) = *self_ty.kind() else { span_bug!(obligation.cause.span, "object candidate with non-object"); }; let object_trait_ref = data.principal().unwrap_or_else(|| { span_bug!(obligation.cause.span, "object candidate with no principal") }); let object_trait_ref = self.infcx.instantiate_binder_with_fresh_vars( obligation.cause.span, HigherRankedType, object_trait_ref, ); let object_trait_ref = object_trait_ref.with_self_ty(self.tcx(), self_ty); let mut nested = vec![]; let mut supertraits = util::supertraits(tcx, ty::Binder::dummy(object_trait_ref)); let unnormalized_upcast_trait_ref = supertraits.nth(index).expect("supertraits iterator no longer has as many elements"); let upcast_trait_ref = normalize_with_depth_to( self, obligation.param_env, obligation.cause.clone(), obligation.recursion_depth + 1, unnormalized_upcast_trait_ref, &mut nested, ); nested.extend(self.infcx.commit_if_ok(|_| { self.infcx .at(&obligation.cause, obligation.param_env) .sup(DefineOpaqueTypes::No, obligation_trait_ref, upcast_trait_ref) .map(|InferOk { obligations, .. }| obligations) .map_err(|_| Unimplemented) })?); // Check supertraits hold. This is so that their associated type bounds // will be checked in the code below. for super_trait in tcx .super_predicates_of(trait_predicate.def_id()) .instantiate(tcx, trait_predicate.trait_ref.args) .predicates .into_iter() { let normalized_super_trait = normalize_with_depth_to( self, obligation.param_env, obligation.cause.clone(), obligation.recursion_depth + 1, super_trait, &mut nested, ); nested.push(obligation.with(tcx, normalized_super_trait)); } let assoc_types: Vec<_> = tcx .associated_items(trait_predicate.def_id()) .in_definition_order() // Associated types that require `Self: Sized` do not show up in the built-in // implementation of `Trait for dyn Trait`, and can be dropped here. .filter(|item| !tcx.generics_require_sized_self(item.def_id)) .filter_map( |item| if item.kind == ty::AssocKind::Type { Some(item.def_id) } else { None }, ) .collect(); for assoc_type in assoc_types { let defs: &ty::Generics = tcx.generics_of(assoc_type); if !defs.params.is_empty() && !tcx.features().generic_associated_types_extended { tcx.sess.delay_span_bug( obligation.cause.span, "GATs in trait object shouldn't have been considered", ); return Err(SelectionError::TraitNotObjectSafe(trait_predicate.trait_ref.def_id)); } // This maybe belongs in wf, but that can't (doesn't) handle // higher-ranked things. // Prevent, e.g., `dyn Iterator`. for bound in self.tcx().item_bounds(assoc_type).transpose_iter() { let subst_bound = if defs.count() == 0 { bound.instantiate(tcx, trait_predicate.trait_ref.args) } else { let mut args = smallvec::SmallVec::with_capacity(defs.count()); args.extend(trait_predicate.trait_ref.args.iter()); let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> = smallvec::SmallVec::with_capacity( bound.skip_binder().kind().bound_vars().len() + defs.count(), ); bound_vars.extend(bound.skip_binder().kind().bound_vars().into_iter()); GenericArgs::fill_single(&mut args, defs, &mut |param, _| match param.kind { GenericParamDefKind::Type { .. } => { let kind = ty::BoundTyKind::Param(param.def_id, param.name); let bound_var = ty::BoundVariableKind::Ty(kind); bound_vars.push(bound_var); Ty::new_bound( tcx, ty::INNERMOST, ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind, }, ) .into() } GenericParamDefKind::Lifetime => { let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name); let bound_var = ty::BoundVariableKind::Region(kind); bound_vars.push(bound_var); ty::Region::new_late_bound( tcx, ty::INNERMOST, ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind, }, ) .into() } GenericParamDefKind::Const { .. } => { let bound_var = ty::BoundVariableKind::Const; bound_vars.push(bound_var); ty::Const::new_bound( tcx, ty::INNERMOST, ty::BoundVar::from_usize(bound_vars.len() - 1), tcx.type_of(param.def_id) .no_bound_vars() .expect("const parameter types cannot be generic"), ) .into() } }); let bound_vars = tcx.mk_bound_variable_kinds(&bound_vars); let assoc_ty_args = tcx.mk_args(&args); let bound = bound.map_bound(|b| b.kind().skip_binder()).instantiate(tcx, assoc_ty_args); ty::Binder::bind_with_vars(bound, bound_vars).to_predicate(tcx) }; let normalized_bound = normalize_with_depth_to( self, obligation.param_env, obligation.cause.clone(), obligation.recursion_depth + 1, subst_bound, &mut nested, ); nested.push(obligation.with(tcx, normalized_bound)); } } debug!(?nested, "object nested obligations"); let vtable_base = vtable_trait_first_method_offset( tcx, (unnormalized_upcast_trait_ref, ty::Binder::dummy(object_trait_ref)), ); Ok(ImplSource::Builtin(BuiltinImplSource::Object { vtable_base: vtable_base }, nested)) } fn confirm_fn_pointer_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, // FIXME(effects) _is_const: bool, ) -> Result>, SelectionError<'tcx>> { debug!(?obligation, "confirm_fn_pointer_candidate"); let tcx = self.tcx(); let Some(self_ty) = self.infcx.shallow_resolve(obligation.self_ty().no_bound_vars()) else { // FIXME: Ideally we'd support `for<'a> fn(&'a ()): Fn(&'a ())`, // but we do not currently. Luckily, such a bound is not // particularly useful, so we don't expect users to write // them often. return Err(SelectionError::Unimplemented); }; let sig = self_ty.fn_sig(tcx); let trait_ref = closure_trait_ref_and_return_type( tcx, obligation.predicate.def_id(), self_ty, sig, util::TupleArgumentsFlag::Yes, ) .map_bound(|(trait_ref, _)| trait_ref); let mut nested = self.confirm_poly_trait_refs(obligation, trait_ref)?; let cause = obligation.derived_cause(BuiltinDerivedObligation); // Confirm the `type Output: Sized;` bound that is present on `FnOnce` let output_ty = self.infcx.instantiate_binder_with_placeholders(sig.output()); let output_ty = normalize_with_depth_to( self, obligation.param_env, cause.clone(), obligation.recursion_depth, output_ty, &mut nested, ); let tr = ty::TraitRef::from_lang_item(self.tcx(), LangItem::Sized, cause.span, [output_ty]); nested.push(Obligation::new(self.infcx.tcx, cause, obligation.param_env, tr)); Ok(nested) } fn confirm_trait_alias_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, ) -> Vec> { debug!(?obligation, "confirm_trait_alias_candidate"); let predicate = self.infcx.instantiate_binder_with_placeholders(obligation.predicate); let trait_ref = predicate.trait_ref; let trait_def_id = trait_ref.def_id; let args = trait_ref.args; let trait_obligations = self.impl_or_trait_obligations( &obligation.cause, obligation.recursion_depth, obligation.param_env, trait_def_id, &args, obligation.predicate, ); debug!(?trait_def_id, ?trait_obligations, "trait alias obligations"); trait_obligations } fn confirm_generator_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, ) -> Result>, SelectionError<'tcx>> { // Okay to skip binder because the args on generator types never // touch bound regions, they just capture the in-scope // type/region parameters. let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder()); let ty::Coroutine(generator_def_id, args, _) = *self_ty.kind() else { bug!("closure candidate for non-closure {:?}", obligation); }; debug!(?obligation, ?generator_def_id, ?args, "confirm_generator_candidate"); let gen_sig = args.as_generator().poly_sig(); // NOTE: The self-type is a generator type and hence is // in fact unparameterized (or at least does not reference any // regions bound in the obligation). let self_ty = obligation .predicate .self_ty() .no_bound_vars() .expect("unboxed closure type should not capture bound vars from the predicate"); let trait_ref = super::util::generator_trait_ref_and_outputs( self.tcx(), obligation.predicate.def_id(), self_ty, gen_sig, ) .map_bound(|(trait_ref, ..)| trait_ref); let nested = self.confirm_poly_trait_refs(obligation, trait_ref)?; debug!(?trait_ref, ?nested, "generator candidate obligations"); Ok(nested) } fn confirm_future_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, ) -> Result>, SelectionError<'tcx>> { // Okay to skip binder because the args on generator types never // touch bound regions, they just capture the in-scope // type/region parameters. let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder()); let ty::Coroutine(generator_def_id, args, _) = *self_ty.kind() else { bug!("closure candidate for non-closure {:?}", obligation); }; debug!(?obligation, ?generator_def_id, ?args, "confirm_future_candidate"); let gen_sig = args.as_generator().poly_sig(); let trait_ref = super::util::future_trait_ref_and_outputs( self.tcx(), obligation.predicate.def_id(), obligation.predicate.no_bound_vars().expect("future has no bound vars").self_ty(), gen_sig, ) .map_bound(|(trait_ref, ..)| trait_ref); let nested = self.confirm_poly_trait_refs(obligation, trait_ref)?; debug!(?trait_ref, ?nested, "future candidate obligations"); Ok(nested) } #[instrument(skip(self), level = "debug")] fn confirm_closure_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, ) -> Result>, SelectionError<'tcx>> { let kind = self .tcx() .fn_trait_kind_from_def_id(obligation.predicate.def_id()) .unwrap_or_else(|| bug!("closure candidate for non-fn trait {:?}", obligation)); // Okay to skip binder because the args on closure types never // touch bound regions, they just capture the in-scope // type/region parameters. let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder()); let ty::Closure(closure_def_id, args) = *self_ty.kind() else { bug!("closure candidate for non-closure {:?}", obligation); }; let trait_ref = self.closure_trait_ref_unnormalized(obligation, args); let mut nested = self.confirm_poly_trait_refs(obligation, trait_ref)?; debug!(?closure_def_id, ?trait_ref, ?nested, "confirm closure candidate obligations"); nested.push(obligation.with( self.tcx(), ty::Binder::dummy(ty::PredicateKind::ClosureKind(closure_def_id, args, kind)), )); Ok(nested) } /// In the case of closure types and fn pointers, /// we currently treat the input type parameters on the trait as /// outputs. This means that when we have a match we have only /// considered the self type, so we have to go back and make sure /// to relate the argument types too. This is kind of wrong, but /// since we control the full set of impls, also not that wrong, /// and it DOES yield better error messages (since we don't report /// errors as if there is no applicable impl, but rather report /// errors are about mismatched argument types. /// /// Here is an example. Imagine we have a closure expression /// and we desugared it so that the type of the expression is /// `Closure`, and `Closure` expects `i32` as argument. Then it /// is "as if" the compiler generated this impl: /// ```ignore (illustrative) /// impl Fn(i32) for Closure { ... } /// ``` /// Now imagine our obligation is `Closure: Fn(usize)`. So far /// we have matched the self type `Closure`. At this point we'll /// compare the `i32` to `usize` and generate an error. /// /// Note that this checking occurs *after* the impl has selected, /// because these output type parameters should not affect the /// selection of the impl. Therefore, if there is a mismatch, we /// report an error to the user. #[instrument(skip(self), level = "trace")] fn confirm_poly_trait_refs( &mut self, obligation: &PolyTraitObligation<'tcx>, self_ty_trait_ref: ty::PolyTraitRef<'tcx>, ) -> Result>, SelectionError<'tcx>> { let obligation_trait_ref = obligation.predicate.to_poly_trait_ref(); // Normalize the obligation and expected trait refs together, because why not let Normalized { obligations: nested, value: (obligation_trait_ref, expected_trait_ref) } = ensure_sufficient_stack(|| { normalize_with_depth( self, obligation.param_env, obligation.cause.clone(), obligation.recursion_depth + 1, (obligation_trait_ref, self_ty_trait_ref), ) }); // needed to define opaque types for tests/ui/type-alias-impl-trait/assoc-projection-ice.rs self.infcx .at(&obligation.cause, obligation.param_env) .sup(DefineOpaqueTypes::Yes, obligation_trait_ref, expected_trait_ref) .map(|InferOk { mut obligations, .. }| { obligations.extend(nested); obligations }) .map_err(|terr| { OutputTypeParameterMismatch(Box::new(SelectionOutputTypeParameterMismatch { expected_trait_ref: obligation_trait_ref, found_trait_ref: expected_trait_ref, terr, })) }) } fn confirm_trait_upcasting_unsize_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, idx: usize, ) -> Result>, SelectionError<'tcx>> { let tcx = self.tcx(); // `assemble_candidates_for_unsizing` should ensure there are no late-bound // regions here. See the comment there for more details. let predicate = obligation.predicate.no_bound_vars().unwrap(); let a_ty = self.infcx.shallow_resolve(predicate.self_ty()); let b_ty = self.infcx.shallow_resolve(predicate.trait_ref.args.type_at(1)); let ty::Dynamic(a_data, a_region, ty::Dyn) = *a_ty.kind() else { bug!() }; let ty::Dynamic(b_data, b_region, ty::Dyn) = *b_ty.kind() else { bug!() }; let source_principal = a_data.principal().unwrap().with_self_ty(tcx, a_ty); let unnormalized_upcast_principal = util::supertraits(tcx, source_principal).nth(idx).unwrap(); let nested = self .match_upcast_principal( obligation, unnormalized_upcast_principal, a_data, b_data, a_region, b_region, )? .expect("did not expect ambiguity during confirmation"); let vtable_segment_callback = { let mut vptr_offset = 0; move |segment| { match segment { VtblSegment::MetadataDSA => { vptr_offset += TyCtxt::COMMON_VTABLE_ENTRIES.len(); } VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => { vptr_offset += count_own_vtable_entries(tcx, trait_ref); if trait_ref == unnormalized_upcast_principal { if emit_vptr { return ControlFlow::Break(Some(vptr_offset)); } else { return ControlFlow::Break(None); } } if emit_vptr { vptr_offset += 1; } } } ControlFlow::Continue(()) } }; let vtable_vptr_slot = prepare_vtable_segments(tcx, source_principal, vtable_segment_callback).unwrap(); Ok(ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { vtable_vptr_slot }, nested)) } fn confirm_builtin_unsize_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, ) -> Result>, SelectionError<'tcx>> { let tcx = self.tcx(); // `assemble_candidates_for_unsizing` should ensure there are no late-bound // regions here. See the comment there for more details. let source = self.infcx.shallow_resolve(obligation.self_ty().no_bound_vars().unwrap()); let target = obligation.predicate.skip_binder().trait_ref.args.type_at(1); let target = self.infcx.shallow_resolve(target); debug!(?source, ?target, "confirm_builtin_unsize_candidate"); Ok(match (source.kind(), target.kind()) { // Trait+Kx+'a -> Trait+Ky+'b (auto traits and lifetime subtyping). (&ty::Dynamic(ref data_a, r_a, dyn_a), &ty::Dynamic(ref data_b, r_b, dyn_b)) if dyn_a == dyn_b => { // See `assemble_candidates_for_unsizing` for more info. // We already checked the compatibility of auto traits within `assemble_candidates_for_unsizing`. let iter = data_a .principal() .map(|b| b.map_bound(ty::ExistentialPredicate::Trait)) .into_iter() .chain( data_a .projection_bounds() .map(|b| b.map_bound(ty::ExistentialPredicate::Projection)), ) .chain( data_b .auto_traits() .map(ty::ExistentialPredicate::AutoTrait) .map(ty::Binder::dummy), ); let existential_predicates = tcx.mk_poly_existential_predicates_from_iter(iter); let source_trait = Ty::new_dynamic(tcx, existential_predicates, r_b, dyn_a); // Require that the traits involved in this upcast are **equal**; // only the **lifetime bound** is changed. let InferOk { mut obligations, .. } = self .infcx .at(&obligation.cause, obligation.param_env) .sup(DefineOpaqueTypes::No, target, source_trait) .map_err(|_| Unimplemented)?; // Register one obligation for 'a: 'b. let outlives = ty::OutlivesPredicate(r_a, r_b); obligations.push(Obligation::with_depth( tcx, obligation.cause.clone(), obligation.recursion_depth + 1, obligation.param_env, obligation.predicate.rebind(outlives), )); ImplSource::Builtin(BuiltinImplSource::Misc, obligations) } // `T` -> `Trait` (_, &ty::Dynamic(ref data, r, ty::Dyn)) => { let mut object_dids = data.auto_traits().chain(data.principal_def_id()); if let Some(did) = object_dids.find(|did| !tcx.check_is_object_safe(*did)) { return Err(TraitNotObjectSafe(did)); } let predicate_to_obligation = |predicate| { Obligation::with_depth( tcx, obligation.cause.clone(), obligation.recursion_depth + 1, obligation.param_env, predicate, ) }; // Create obligations: // - Casting `T` to `Trait` // - For all the various builtin bounds attached to the object cast. (In other // words, if the object type is `Foo + Send`, this would create an obligation for // the `Send` check.) // - Projection predicates let mut nested: Vec<_> = data .iter() .map(|predicate| predicate_to_obligation(predicate.with_self_ty(tcx, source))) .collect(); // We can only make objects from sized types. let tr = ty::TraitRef::from_lang_item( tcx, LangItem::Sized, obligation.cause.span, [source], ); nested.push(predicate_to_obligation(tr.to_predicate(tcx))); // If the type is `Foo + 'a`, ensure that the type // being cast to `Foo + 'a` outlives `'a`: let outlives = ty::OutlivesPredicate(source, r); nested.push(predicate_to_obligation( ty::Binder::dummy(ty::ClauseKind::TypeOutlives(outlives)).to_predicate(tcx), )); ImplSource::Builtin(BuiltinImplSource::Misc, nested) } // `[T; n]` -> `[T]` (&ty::Array(a, _), &ty::Slice(b)) => { let InferOk { obligations, .. } = self .infcx .at(&obligation.cause, obligation.param_env) .eq(DefineOpaqueTypes::No, b, a) .map_err(|_| Unimplemented)?; ImplSource::Builtin(BuiltinImplSource::Misc, obligations) } // `Struct` -> `Struct` (&ty::Adt(def, args_a), &ty::Adt(_, args_b)) => { let unsizing_params = tcx.unsizing_params_for_adt(def.did()); if unsizing_params.is_empty() { return Err(Unimplemented); } let tail_field = def.non_enum_variant().tail(); let tail_field_ty = tcx.type_of(tail_field.did); let mut nested = vec![]; // Extract `TailField` and `TailField` from `Struct` and `Struct`, // normalizing in the process, since `type_of` returns something directly from // astconv (which means it's un-normalized). let source_tail = normalize_with_depth_to( self, obligation.param_env, obligation.cause.clone(), obligation.recursion_depth + 1, tail_field_ty.instantiate(tcx, args_a), &mut nested, ); let target_tail = normalize_with_depth_to( self, obligation.param_env, obligation.cause.clone(), obligation.recursion_depth + 1, tail_field_ty.instantiate(tcx, args_b), &mut nested, ); // Check that the source struct with the target's // unsizing parameters is equal to the target. let args = tcx.mk_args_from_iter(args_a.iter().enumerate().map(|(i, k)| { if unsizing_params.contains(i as u32) { args_b[i] } else { k } })); let new_struct = Ty::new_adt(tcx, def, args); let InferOk { obligations, .. } = self .infcx .at(&obligation.cause, obligation.param_env) .eq(DefineOpaqueTypes::No, target, new_struct) .map_err(|_| Unimplemented)?; nested.extend(obligations); // Construct the nested `TailField: Unsize>` predicate. let tail_unsize_obligation = obligation.with( tcx, ty::TraitRef::new( tcx, obligation.predicate.def_id(), [source_tail, target_tail], ), ); nested.push(tail_unsize_obligation); ImplSource::Builtin(BuiltinImplSource::Misc, nested) } // `(.., T)` -> `(.., U)` (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => { assert_eq!(tys_a.len(), tys_b.len()); // The last field of the tuple has to exist. let (&a_last, a_mid) = tys_a.split_last().ok_or(Unimplemented)?; let &b_last = tys_b.last().unwrap(); // Check that the source tuple with the target's // last element is equal to the target. let new_tuple = Ty::new_tup_from_iter(tcx, a_mid.iter().copied().chain(iter::once(b_last))); let InferOk { mut obligations, .. } = self .infcx .at(&obligation.cause, obligation.param_env) .eq(DefineOpaqueTypes::No, target, new_tuple) .map_err(|_| Unimplemented)?; // Add a nested `T: Unsize` predicate. let last_unsize_obligation = obligation.with( tcx, ty::TraitRef::new(tcx, obligation.predicate.def_id(), [a_last, b_last]), ); obligations.push(last_unsize_obligation); ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, obligations) } _ => bug!("source: {source}, target: {target}"), }) } fn confirm_const_destruct_candidate( &mut self, obligation: &PolyTraitObligation<'tcx>, impl_def_id: Option, ) -> Result>, SelectionError<'tcx>> { // `~const Destruct` in a non-const environment is always trivially true, since our type is `Drop` // FIXME(effects) if true { return Ok(vec![]); } let drop_trait = self.tcx().require_lang_item(LangItem::Drop, None); let tcx = self.tcx(); let self_ty = self.infcx.shallow_resolve(obligation.self_ty()); let mut nested = vec![]; let cause = obligation.derived_cause(BuiltinDerivedObligation); // If we have a custom `impl const Drop`, then // first check it like a regular impl candidate. // This is copied from confirm_impl_candidate but remaps the predicate to `~const Drop` beforehand. if let Some(impl_def_id) = impl_def_id { let mut new_obligation = obligation.clone(); new_obligation.predicate = new_obligation.predicate.map_bound(|mut trait_pred| { trait_pred.trait_ref.def_id = drop_trait; trait_pred }); let args = self.rematch_impl(impl_def_id, &new_obligation); debug!(?args, "impl args"); let cause = obligation.derived_cause(|derived| { ImplDerivedObligation(Box::new(ImplDerivedObligationCause { derived, impl_or_alias_def_id: impl_def_id, impl_def_predicate_index: None, span: obligation.cause.span, })) }); let obligations = ensure_sufficient_stack(|| { self.vtable_impl( impl_def_id, args, &cause, new_obligation.recursion_depth + 1, new_obligation.param_env, obligation.predicate, ) }); nested.extend(obligations.nested); } // We want to confirm the ADT's fields if we have an ADT let mut stack = match *self_ty.skip_binder().kind() { ty::Adt(def, args) => def.all_fields().map(|f| f.ty(tcx, args)).collect(), _ => vec![self_ty.skip_binder()], }; while let Some(nested_ty) = stack.pop() { match *nested_ty.kind() { // We know these types are trivially drop ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Infer(ty::IntVar(_)) | ty::Infer(ty::FloatVar(_)) | ty::Str | ty::RawPtr(_) | ty::Ref(..) | ty::FnDef(..) | ty::FnPtr(_) | ty::Never | ty::Foreign(_) => {} // `ManuallyDrop` is trivially drop ty::Adt(def, _) if Some(def.did()) == tcx.lang_items().manually_drop() => {} // These types are built-in, so we can fast-track by registering // nested predicates for their constituent type(s) ty::Array(ty, _) | ty::Slice(ty) => { stack.push(ty); } ty::Tuple(tys) => { stack.extend(tys.iter()); } ty::Closure(_, args) => { stack.push(args.as_closure().tupled_upvars_ty()); } ty::Coroutine(_, args, _) => { let generator = args.as_generator(); stack.extend([generator.tupled_upvars_ty(), generator.witness()]); } ty::CoroutineWitness(def_id, args) => { let tcx = self.tcx(); stack.extend(tcx.generator_hidden_types(def_id).map(|bty| { let ty = bty.instantiate(tcx, args); debug_assert!(!ty.has_late_bound_regions()); ty })) } // If we have a projection type, make sure to normalize it so we replace it // with a fresh infer variable ty::Alias(ty::Projection | ty::Inherent, ..) => { // FIXME(effects) this needs constness let predicate = normalize_with_depth_to( self, obligation.param_env, cause.clone(), obligation.recursion_depth + 1, self_ty.rebind(ty::TraitPredicate { trait_ref: ty::TraitRef::from_lang_item( self.tcx(), LangItem::Destruct, cause.span, [nested_ty], ), polarity: ty::ImplPolarity::Positive, }), &mut nested, ); nested.push(Obligation::with_depth( tcx, cause.clone(), obligation.recursion_depth + 1, obligation.param_env, predicate, )); } // If we have any other type (e.g. an ADT), just register a nested obligation // since it's either not `const Drop` (and we raise an error during selection), // or it's an ADT (and we need to check for a custom impl during selection) _ => { // FIXME(effects) this needs constness let predicate = self_ty.rebind(ty::TraitPredicate { trait_ref: ty::TraitRef::from_lang_item( self.tcx(), LangItem::Destruct, cause.span, [nested_ty], ), polarity: ty::ImplPolarity::Positive, }); nested.push(Obligation::with_depth( tcx, cause.clone(), obligation.recursion_depth + 1, obligation.param_env, predicate, )); } } } Ok(nested) } }