use crate::util::{check_builtin_macro_attribute, warn_on_duplicate_attribute}; use core::ops::ControlFlow; use rustc_ast as ast; use rustc_ast::mut_visit::MutVisitor; use rustc_ast::ptr::P; use rustc_ast::visit::{AssocCtxt, Visitor}; use rustc_ast::NodeId; use rustc_ast::{mut_visit, visit}; use rustc_ast::{Attribute, HasAttrs, HasTokens}; use rustc_errors::PResult; use rustc_expand::base::{Annotatable, ExtCtxt}; use rustc_expand::config::StripUnconfigured; use rustc_expand::configure; use rustc_feature::Features; use rustc_parse::parser::{ForceCollect, Parser}; use rustc_session::Session; use rustc_span::symbol::sym; use rustc_span::Span; use smallvec::SmallVec; use tracing::instrument; pub(crate) fn expand( ecx: &mut ExtCtxt<'_>, _span: Span, meta_item: &ast::MetaItem, annotatable: Annotatable, ) -> Vec { check_builtin_macro_attribute(ecx, meta_item, sym::cfg_eval); warn_on_duplicate_attribute(ecx, &annotatable, sym::cfg_eval); vec![cfg_eval(ecx.sess, ecx.ecfg.features, annotatable, ecx.current_expansion.lint_node_id)] } pub(crate) fn cfg_eval( sess: &Session, features: &Features, annotatable: Annotatable, lint_node_id: NodeId, ) -> Annotatable { let features = Some(features); CfgEval(StripUnconfigured { sess, features, config_tokens: true, lint_node_id }) .configure_annotatable(annotatable) // Since the item itself has already been configured by the `InvocationCollector`, // we know that fold result vector will contain exactly one element. .unwrap() } struct CfgEval<'a>(StripUnconfigured<'a>); fn flat_map_annotatable( vis: &mut impl MutVisitor, annotatable: Annotatable, ) -> Option { match annotatable { Annotatable::Item(item) => vis.flat_map_item(item).pop().map(Annotatable::Item), Annotatable::AssocItem(item, ctxt) => { Some(Annotatable::AssocItem(vis.flat_map_assoc_item(item, ctxt).pop()?, ctxt)) } Annotatable::ForeignItem(item) => { vis.flat_map_foreign_item(item).pop().map(Annotatable::ForeignItem) } Annotatable::Stmt(stmt) => { vis.flat_map_stmt(stmt.into_inner()).pop().map(P).map(Annotatable::Stmt) } Annotatable::Expr(mut expr) => { vis.visit_expr(&mut expr); Some(Annotatable::Expr(expr)) } Annotatable::Arm(arm) => vis.flat_map_arm(arm).pop().map(Annotatable::Arm), Annotatable::ExprField(field) => { vis.flat_map_expr_field(field).pop().map(Annotatable::ExprField) } Annotatable::PatField(fp) => vis.flat_map_pat_field(fp).pop().map(Annotatable::PatField), Annotatable::GenericParam(param) => { vis.flat_map_generic_param(param).pop().map(Annotatable::GenericParam) } Annotatable::Param(param) => vis.flat_map_param(param).pop().map(Annotatable::Param), Annotatable::FieldDef(sf) => vis.flat_map_field_def(sf).pop().map(Annotatable::FieldDef), Annotatable::Variant(v) => vis.flat_map_variant(v).pop().map(Annotatable::Variant), Annotatable::Crate(mut krate) => { vis.visit_crate(&mut krate); Some(Annotatable::Crate(krate)) } } } fn has_cfg_or_cfg_attr(annotatable: &Annotatable) -> bool { struct CfgFinder; impl<'ast> visit::Visitor<'ast> for CfgFinder { type Result = ControlFlow<()>; fn visit_attribute(&mut self, attr: &'ast Attribute) -> ControlFlow<()> { if attr .ident() .is_some_and(|ident| ident.name == sym::cfg || ident.name == sym::cfg_attr) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) } } } let res = match annotatable { Annotatable::Item(item) => CfgFinder.visit_item(item), Annotatable::AssocItem(item, ctxt) => CfgFinder.visit_assoc_item(item, *ctxt), Annotatable::ForeignItem(item) => CfgFinder.visit_foreign_item(item), Annotatable::Stmt(stmt) => CfgFinder.visit_stmt(stmt), Annotatable::Expr(expr) => CfgFinder.visit_expr(expr), Annotatable::Arm(arm) => CfgFinder.visit_arm(arm), Annotatable::ExprField(field) => CfgFinder.visit_expr_field(field), Annotatable::PatField(field) => CfgFinder.visit_pat_field(field), Annotatable::GenericParam(param) => CfgFinder.visit_generic_param(param), Annotatable::Param(param) => CfgFinder.visit_param(param), Annotatable::FieldDef(field) => CfgFinder.visit_field_def(field), Annotatable::Variant(variant) => CfgFinder.visit_variant(variant), Annotatable::Crate(krate) => CfgFinder.visit_crate(krate), }; res.is_break() } impl CfgEval<'_> { fn configure(&mut self, node: T) -> Option { self.0.configure(node) } fn configure_annotatable(&mut self, mut annotatable: Annotatable) -> Option { // Tokenizing and re-parsing the `Annotatable` can have a significant // performance impact, so try to avoid it if possible if !has_cfg_or_cfg_attr(&annotatable) { return Some(annotatable); } // The majority of parsed attribute targets will never need to have early cfg-expansion // run (e.g. they are not part of a `#[derive]` or `#[cfg_eval]` macro input). // Therefore, we normally do not capture the necessary information about `#[cfg]` // and `#[cfg_attr]` attributes during parsing. // // Therefore, when we actually *do* run early cfg-expansion, we need to tokenize // and re-parse the attribute target, this time capturing information about // the location of `#[cfg]` and `#[cfg_attr]` in the token stream. The tokenization // process is lossless, so this process is invisible to proc-macros. let parse_annotatable_with: for<'a> fn(&mut Parser<'a>) -> PResult<'a, _> = match annotatable { Annotatable::Item(_) => { |parser| Ok(Annotatable::Item(parser.parse_item(ForceCollect::Yes)?.unwrap())) } Annotatable::AssocItem(_, AssocCtxt::Trait) => |parser| { Ok(Annotatable::AssocItem( parser.parse_trait_item(ForceCollect::Yes)?.unwrap().unwrap(), AssocCtxt::Trait, )) }, Annotatable::AssocItem(_, AssocCtxt::Impl) => |parser| { Ok(Annotatable::AssocItem( parser.parse_impl_item(ForceCollect::Yes)?.unwrap().unwrap(), AssocCtxt::Impl, )) }, Annotatable::ForeignItem(_) => |parser| { Ok(Annotatable::ForeignItem( parser.parse_foreign_item(ForceCollect::Yes)?.unwrap().unwrap(), )) }, Annotatable::Stmt(_) => |parser| { Ok(Annotatable::Stmt(P(parser .parse_stmt_without_recovery(false, ForceCollect::Yes)? .unwrap()))) }, Annotatable::Expr(_) => { |parser| Ok(Annotatable::Expr(parser.parse_expr_force_collect()?)) } _ => unreachable!(), }; // 'Flatten' all nonterminals (i.e. `TokenKind::Interpolated`) // to `None`-delimited groups containing the corresponding tokens. This // is normally delayed until the proc-macro server actually needs to // provide a `TokenKind::Interpolated` to a proc-macro. We do this earlier, // so that we can handle cases like: // // ```rust // #[cfg_eval] #[cfg] $item //``` // // where `$item` is `#[cfg_attr] struct Foo {}`. We want to make // sure to evaluate *all* `#[cfg]` and `#[cfg_attr]` attributes - the simplest // way to do this is to do a single parse of a stream without any nonterminals. let orig_tokens = annotatable.to_tokens().flattened(); // Re-parse the tokens, setting the `capture_cfg` flag to save extra information // to the captured `AttrTokenStream` (specifically, we capture // `AttrTokenTree::AttrsTarget` for all occurrences of `#[cfg]` and `#[cfg_attr]`) let mut parser = Parser::new(&self.0.sess.psess, orig_tokens, None); parser.capture_cfg = true; match parse_annotatable_with(&mut parser) { Ok(a) => annotatable = a, Err(err) => { err.emit(); return Some(annotatable); } } // Now that we have our re-parsed `AttrTokenStream`, recursively configuring // our attribute target will correctly the tokens as well. flat_map_annotatable(self, annotatable) } } impl MutVisitor for CfgEval<'_> { #[instrument(level = "trace", skip(self))] fn visit_expr(&mut self, expr: &mut P) { self.0.configure_expr(expr, false); mut_visit::walk_expr(self, expr); } #[instrument(level = "trace", skip(self))] fn visit_method_receiver_expr(&mut self, expr: &mut P) { self.0.configure_expr(expr, true); mut_visit::walk_expr(self, expr); } fn filter_map_expr(&mut self, expr: P) -> Option> { let mut expr = configure!(self, expr); mut_visit::walk_expr(self, &mut expr); Some(expr) } fn flat_map_generic_param( &mut self, param: ast::GenericParam, ) -> SmallVec<[ast::GenericParam; 1]> { let param = configure!(self, param); mut_visit::walk_flat_map_generic_param(self, param) } fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> { let stmt = configure!(self, stmt); mut_visit::walk_flat_map_stmt(self, stmt) } fn flat_map_item(&mut self, item: P) -> SmallVec<[P; 1]> { let item = configure!(self, item); mut_visit::walk_flat_map_item(self, item) } fn flat_map_assoc_item( &mut self, item: P, _ctxt: AssocCtxt, ) -> SmallVec<[P; 1]> { let item = configure!(self, item); mut_visit::walk_flat_map_item(self, item) } fn flat_map_foreign_item( &mut self, foreign_item: P, ) -> SmallVec<[P; 1]> { let foreign_item = configure!(self, foreign_item); mut_visit::walk_flat_map_item(self, foreign_item) } fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> { let arm = configure!(self, arm); mut_visit::walk_flat_map_arm(self, arm) } fn flat_map_expr_field(&mut self, field: ast::ExprField) -> SmallVec<[ast::ExprField; 1]> { let field = configure!(self, field); mut_visit::walk_flat_map_expr_field(self, field) } fn flat_map_pat_field(&mut self, fp: ast::PatField) -> SmallVec<[ast::PatField; 1]> { let fp = configure!(self, fp); mut_visit::walk_flat_map_pat_field(self, fp) } fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> { let p = configure!(self, p); mut_visit::walk_flat_map_param(self, p) } fn flat_map_field_def(&mut self, sf: ast::FieldDef) -> SmallVec<[ast::FieldDef; 1]> { let sf = configure!(self, sf); mut_visit::walk_flat_map_field_def(self, sf) } fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> { let variant = configure!(self, variant); mut_visit::walk_flat_map_variant(self, variant) } }