use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::temp_dir::MaybeTempDir; use rustc_fs_util::fix_windows_verbatim_for_gcc; use rustc_hir::def_id::CrateNum; use rustc_middle::middle::cstore::{EncodedMetadata, LibSource}; use rustc_middle::middle::dependency_format::Linkage; use rustc_session::config::{self, CFGuard, CrateType, DebugInfo}; use rustc_session::config::{OutputFilenames, OutputType, PrintRequest, SanitizerSet}; use rustc_session::output::{check_file_is_writeable, invalid_output_for_target, out_filename}; use rustc_session::search_paths::PathKind; use rustc_session::utils::NativeLibKind; /// For all the linkers we support, and information they might /// need out of the shared crate context before we get rid of it. use rustc_session::{filesearch, Session}; use rustc_span::symbol::Symbol; use rustc_target::spec::crt_objects::{CrtObjects, CrtObjectsFallback}; use rustc_target::spec::{LinkOutputKind, LinkerFlavor, LldFlavor, SplitDebuginfo}; use rustc_target::spec::{PanicStrategy, RelocModel, RelroLevel, Target}; use super::archive::ArchiveBuilder; use super::command::Command; use super::linker::{self, Linker}; use super::rpath::{self, RPathConfig}; use crate::{ looks_like_rust_object_file, CodegenResults, CompiledModule, CrateInfo, NativeLib, METADATA_FILENAME, }; use cc::windows_registry; use tempfile::Builder as TempFileBuilder; use std::ffi::OsString; use std::path::{Path, PathBuf}; use std::process::{ExitStatus, Output, Stdio}; use std::{ascii, char, env, fmt, fs, io, mem, str}; pub fn remove(sess: &Session, path: &Path) { if let Err(e) = fs::remove_file(path) { sess.err(&format!("failed to remove {}: {}", path.display(), e)); } } /// Performs the linkage portion of the compilation phase. This will generate all /// of the requested outputs for this compilation session. pub fn link_binary<'a, B: ArchiveBuilder<'a>>( sess: &'a Session, codegen_results: &CodegenResults, outputs: &OutputFilenames, crate_name: &str, target_cpu: &str, ) { let _timer = sess.timer("link_binary"); let output_metadata = sess.opts.output_types.contains_key(&OutputType::Metadata); for &crate_type in sess.crate_types().iter() { // Ignore executable crates if we have -Z no-codegen, as they will error. if (sess.opts.debugging_opts.no_codegen || !sess.opts.output_types.should_codegen()) && !output_metadata && crate_type == CrateType::Executable { continue; } if invalid_output_for_target(sess, crate_type) { bug!( "invalid output type `{:?}` for target os `{}`", crate_type, sess.opts.target_triple ); } sess.time("link_binary_check_files_are_writeable", || { for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) { check_file_is_writeable(obj, sess); } }); if outputs.outputs.should_link() { let tmpdir = TempFileBuilder::new() .prefix("rustc") .tempdir() .unwrap_or_else(|err| sess.fatal(&format!("couldn't create a temp dir: {}", err))); let path = MaybeTempDir::new(tmpdir, sess.opts.cg.save_temps); let out_filename = out_filename(sess, crate_type, outputs, crate_name); match crate_type { CrateType::Rlib => { let _timer = sess.timer("link_rlib"); link_rlib::(sess, codegen_results, RlibFlavor::Normal, &out_filename, &path) .build(); } CrateType::Staticlib => { link_staticlib::(sess, codegen_results, &out_filename, &path); } _ => { link_natively::( sess, crate_type, &out_filename, codegen_results, path.as_ref(), target_cpu, ); } } if sess.opts.json_artifact_notifications { sess.parse_sess.span_diagnostic.emit_artifact_notification(&out_filename, "link"); } } } // Remove the temporary object file and metadata if we aren't saving temps sess.time("link_binary_remove_temps", || { if !sess.opts.cg.save_temps { let remove_temps_from_module = |module: &CompiledModule| { if let Some(ref obj) = module.object { remove(sess, obj); } if let Some(ref obj) = module.dwarf_object { remove(sess, obj); } }; if sess.opts.output_types.should_link() && !preserve_objects_for_their_debuginfo(sess) { for module in &codegen_results.modules { remove_temps_from_module(module); } } if let Some(ref metadata_module) = codegen_results.metadata_module { remove_temps_from_module(metadata_module); } if let Some(ref allocator_module) = codegen_results.allocator_module { remove_temps_from_module(allocator_module); } } }); } // The third parameter is for env vars, used on windows to set up the // path for MSVC to find its DLLs, and gcc to find its bundled // toolchain fn get_linker( sess: &Session, linker: &Path, flavor: LinkerFlavor, self_contained: bool, ) -> Command { let msvc_tool = windows_registry::find_tool(&sess.opts.target_triple.triple(), "link.exe"); // If our linker looks like a batch script on Windows then to execute this // we'll need to spawn `cmd` explicitly. This is primarily done to handle // emscripten where the linker is `emcc.bat` and needs to be spawned as // `cmd /c emcc.bat ...`. // // This worked historically but is needed manually since #42436 (regression // was tagged as #42791) and some more info can be found on #44443 for // emscripten itself. let mut cmd = match linker.to_str() { Some(linker) if cfg!(windows) && linker.ends_with(".bat") => Command::bat_script(linker), _ => match flavor { LinkerFlavor::Lld(f) => Command::lld(linker, f), LinkerFlavor::Msvc if sess.opts.cg.linker.is_none() && sess.target.linker.is_none() => { Command::new(msvc_tool.as_ref().map_or(linker, |t| t.path())) } _ => Command::new(linker), }, }; // UWP apps have API restrictions enforced during Store submissions. // To comply with the Windows App Certification Kit, // MSVC needs to link with the Store versions of the runtime libraries (vcruntime, msvcrt, etc). let t = &sess.target; if (flavor == LinkerFlavor::Msvc || flavor == LinkerFlavor::Lld(LldFlavor::Link)) && t.vendor == "uwp" { if let Some(ref tool) = msvc_tool { let original_path = tool.path(); if let Some(ref root_lib_path) = original_path.ancestors().nth(4) { let arch = match t.arch.as_str() { "x86_64" => Some("x64".to_string()), "x86" => Some("x86".to_string()), "aarch64" => Some("arm64".to_string()), "arm" => Some("arm".to_string()), _ => None, }; if let Some(ref a) = arch { // FIXME: Move this to `fn linker_with_args`. let mut arg = OsString::from("/LIBPATH:"); arg.push(format!("{}\\lib\\{}\\store", root_lib_path.display(), a.to_string())); cmd.arg(&arg); } else { warn!("arch is not supported"); } } else { warn!("MSVC root path lib location not found"); } } else { warn!("link.exe not found"); } } // The compiler's sysroot often has some bundled tools, so add it to the // PATH for the child. let mut new_path = sess.host_filesearch(PathKind::All).get_tools_search_paths(self_contained); let mut msvc_changed_path = false; if sess.target.is_like_msvc { if let Some(ref tool) = msvc_tool { cmd.args(tool.args()); for &(ref k, ref v) in tool.env() { if k == "PATH" { new_path.extend(env::split_paths(v)); msvc_changed_path = true; } else { cmd.env(k, v); } } } } if !msvc_changed_path { if let Some(path) = env::var_os("PATH") { new_path.extend(env::split_paths(&path)); } } cmd.env("PATH", env::join_paths(new_path).unwrap()); cmd } pub fn each_linked_rlib( info: &CrateInfo, f: &mut dyn FnMut(CrateNum, &Path), ) -> Result<(), String> { let crates = info.used_crates_static.iter(); let mut fmts = None; for (ty, list) in info.dependency_formats.iter() { match ty { CrateType::Executable | CrateType::Staticlib | CrateType::Cdylib | CrateType::ProcMacro => { fmts = Some(list); break; } _ => {} } } let fmts = match fmts { Some(f) => f, None => return Err("could not find formats for rlibs".to_string()), }; for &(cnum, ref path) in crates { match fmts.get(cnum.as_usize() - 1) { Some(&Linkage::NotLinked | &Linkage::IncludedFromDylib) => continue, Some(_) => {} None => return Err("could not find formats for rlibs".to_string()), } let name = &info.crate_name[&cnum]; let path = match *path { LibSource::Some(ref p) => p, LibSource::MetadataOnly => { return Err(format!( "could not find rlib for: `{}`, found rmeta (metadata) file", name )); } LibSource::None => return Err(format!("could not find rlib for: `{}`", name)), }; f(cnum, &path); } Ok(()) } /// We use a temp directory here to avoid races between concurrent rustc processes, /// such as builds in the same directory using the same filename for metadata while /// building an `.rlib` (stomping over one another), or writing an `.rmeta` into a /// directory being searched for `extern crate` (observing an incomplete file). /// The returned path is the temporary file containing the complete metadata. pub fn emit_metadata(sess: &Session, metadata: &EncodedMetadata, tmpdir: &MaybeTempDir) -> PathBuf { let out_filename = tmpdir.as_ref().join(METADATA_FILENAME); let result = fs::write(&out_filename, &metadata.raw_data); if let Err(e) = result { sess.fatal(&format!("failed to write {}: {}", out_filename.display(), e)); } out_filename } /// Create an 'rlib'. /// /// An rlib in its current incarnation is essentially a renamed .a file. The rlib primarily contains /// the object file of the crate, but it also contains all of the object files from native /// libraries. This is done by unzipping native libraries and inserting all of the contents into /// this archive. fn link_rlib<'a, B: ArchiveBuilder<'a>>( sess: &'a Session, codegen_results: &CodegenResults, flavor: RlibFlavor, out_filename: &Path, tmpdir: &MaybeTempDir, ) -> B { info!("preparing rlib to {:?}", out_filename); let mut ab = ::new(sess, out_filename, None); for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) { ab.add_file(obj); } // Note that in this loop we are ignoring the value of `lib.cfg`. That is, // we may not be configured to actually include a static library if we're // adding it here. That's because later when we consume this rlib we'll // decide whether we actually needed the static library or not. // // To do this "correctly" we'd need to keep track of which libraries added // which object files to the archive. We don't do that here, however. The // #[link(cfg(..))] feature is unstable, though, and only intended to get // liblibc working. In that sense the check below just indicates that if // there are any libraries we want to omit object files for at link time we // just exclude all custom object files. // // Eventually if we want to stabilize or flesh out the #[link(cfg(..))] // feature then we'll need to figure out how to record what objects were // loaded from the libraries found here and then encode that into the // metadata of the rlib we're generating somehow. for lib in codegen_results.crate_info.used_libraries.iter() { match lib.kind { NativeLibKind::StaticBundle => {} NativeLibKind::StaticNoBundle | NativeLibKind::Dylib | NativeLibKind::Framework | NativeLibKind::RawDylib | NativeLibKind::Unspecified => continue, } if let Some(name) = lib.name { ab.add_native_library(name); } } // After adding all files to the archive, we need to update the // symbol table of the archive. ab.update_symbols(); // Note that it is important that we add all of our non-object "magical // files" *after* all of the object files in the archive. The reason for // this is as follows: // // * When performing LTO, this archive will be modified to remove // objects from above. The reason for this is described below. // // * When the system linker looks at an archive, it will attempt to // determine the architecture of the archive in order to see whether its // linkable. // // The algorithm for this detection is: iterate over the files in the // archive. Skip magical SYMDEF names. Interpret the first file as an // object file. Read architecture from the object file. // // * As one can probably see, if "metadata" and "foo.bc" were placed // before all of the objects, then the architecture of this archive would // not be correctly inferred once 'foo.o' is removed. // // Basically, all this means is that this code should not move above the // code above. match flavor { RlibFlavor::Normal => { // Instead of putting the metadata in an object file section, rlibs // contain the metadata in a separate file. ab.add_file(&emit_metadata(sess, &codegen_results.metadata, tmpdir)); // After adding all files to the archive, we need to update the // symbol table of the archive. This currently dies on macOS (see // #11162), and isn't necessary there anyway if !sess.target.is_like_osx { ab.update_symbols(); } } RlibFlavor::StaticlibBase => { let obj = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref()); if let Some(obj) = obj { ab.add_file(obj); } } } ab } /// Create a static archive. /// /// This is essentially the same thing as an rlib, but it also involves adding all of the upstream /// crates' objects into the archive. This will slurp in all of the native libraries of upstream /// dependencies as well. /// /// Additionally, there's no way for us to link dynamic libraries, so we warn about all dynamic /// library dependencies that they're not linked in. /// /// There's no need to include metadata in a static archive, so ensure to not link in the metadata /// object file (and also don't prepare the archive with a metadata file). fn link_staticlib<'a, B: ArchiveBuilder<'a>>( sess: &'a Session, codegen_results: &CodegenResults, out_filename: &Path, tempdir: &MaybeTempDir, ) { let mut ab = link_rlib::(sess, codegen_results, RlibFlavor::StaticlibBase, out_filename, tempdir); let mut all_native_libs = vec![]; let res = each_linked_rlib(&codegen_results.crate_info, &mut |cnum, path| { let name = &codegen_results.crate_info.crate_name[&cnum]; let native_libs = &codegen_results.crate_info.native_libraries[&cnum]; // Here when we include the rlib into our staticlib we need to make a // decision whether to include the extra object files along the way. // These extra object files come from statically included native // libraries, but they may be cfg'd away with #[link(cfg(..))]. // // This unstable feature, though, only needs liblibc to work. The only // use case there is where musl is statically included in liblibc.rlib, // so if we don't want the included version we just need to skip it. As // a result the logic here is that if *any* linked library is cfg'd away // we just skip all object files. // // Clearly this is not sufficient for a general purpose feature, and // we'd want to read from the library's metadata to determine which // object files come from where and selectively skip them. let skip_object_files = native_libs .iter() .any(|lib| lib.kind == NativeLibKind::StaticBundle && !relevant_lib(sess, lib)); ab.add_rlib( path, &name.as_str(), are_upstream_rust_objects_already_included(sess) && !ignored_for_lto(sess, &codegen_results.crate_info, cnum), skip_object_files, ) .unwrap(); all_native_libs.extend(codegen_results.crate_info.native_libraries[&cnum].iter().cloned()); }); if let Err(e) = res { sess.fatal(&e); } ab.update_symbols(); ab.build(); if !all_native_libs.is_empty() { if sess.opts.prints.contains(&PrintRequest::NativeStaticLibs) { print_native_static_libs(sess, &all_native_libs); } } } fn escape_stdout_stderr_string(s: &[u8]) -> String { str::from_utf8(s).map(|s| s.to_owned()).unwrap_or_else(|_| { let mut x = "Non-UTF-8 output: ".to_string(); x.extend(s.iter().flat_map(|&b| ascii::escape_default(b)).map(char::from)); x }) } const LLVM_DWP_EXECUTABLE: &'static str = "rust-llvm-dwp"; /// Invoke `llvm-dwp` (shipped alongside rustc) to link `dwo` files from Split DWARF into a `dwp` /// file. fn link_dwarf_object<'a>(sess: &'a Session, executable_out_filename: &Path) { info!("preparing dwp to {}.dwp", executable_out_filename.to_str().unwrap()); let dwp_out_filename = executable_out_filename.with_extension("dwp"); let mut cmd = Command::new(LLVM_DWP_EXECUTABLE); cmd.arg("-e"); cmd.arg(executable_out_filename); cmd.arg("-o"); cmd.arg(&dwp_out_filename); let mut new_path = sess.host_filesearch(PathKind::All).get_tools_search_paths(false); if let Some(path) = env::var_os("PATH") { new_path.extend(env::split_paths(&path)); } let new_path = env::join_paths(new_path).unwrap(); cmd.env("PATH", new_path); info!("{:?}", &cmd); match sess.time("run_dwp", || cmd.output()) { Ok(prog) if !prog.status.success() => { sess.struct_err(&format!( "linking dwarf objects with `{}` failed: {}", LLVM_DWP_EXECUTABLE, prog.status )) .note(&format!("{:?}", &cmd)) .note(&escape_stdout_stderr_string(&prog.stdout)) .note(&escape_stdout_stderr_string(&prog.stderr)) .emit(); info!("linker stderr:\n{}", escape_stdout_stderr_string(&prog.stderr)); info!("linker stdout:\n{}", escape_stdout_stderr_string(&prog.stdout)); } Ok(_) => {} Err(e) => { let dwp_not_found = e.kind() == io::ErrorKind::NotFound; let mut err = if dwp_not_found { sess.struct_err(&format!("linker `{}` not found", LLVM_DWP_EXECUTABLE)) } else { sess.struct_err(&format!("could not exec the linker `{}`", LLVM_DWP_EXECUTABLE)) }; err.note(&e.to_string()); if !dwp_not_found { err.note(&format!("{:?}", &cmd)); } err.emit(); } } } /// Create a dynamic library or executable. /// /// This will invoke the system linker/cc to create the resulting file. This links to all upstream /// files as well. fn link_natively<'a, B: ArchiveBuilder<'a>>( sess: &'a Session, crate_type: CrateType, out_filename: &Path, codegen_results: &CodegenResults, tmpdir: &Path, target_cpu: &str, ) { info!("preparing {:?} to {:?}", crate_type, out_filename); let (linker_path, flavor) = linker_and_flavor(sess); let mut cmd = linker_with_args::( &linker_path, flavor, sess, crate_type, tmpdir, out_filename, codegen_results, target_cpu, ); linker::disable_localization(&mut cmd); for &(ref k, ref v) in &sess.target.link_env { cmd.env(k, v); } for k in &sess.target.link_env_remove { cmd.env_remove(k); } if sess.opts.debugging_opts.print_link_args { println!("{:?}", &cmd); } // May have not found libraries in the right formats. sess.abort_if_errors(); // Invoke the system linker info!("{:?}", &cmd); let retry_on_segfault = env::var("RUSTC_RETRY_LINKER_ON_SEGFAULT").is_ok(); let mut prog; let mut i = 0; loop { i += 1; prog = sess.time("run_linker", || exec_linker(sess, &cmd, out_filename, tmpdir)); let output = match prog { Ok(ref output) => output, Err(_) => break, }; if output.status.success() { break; } let mut out = output.stderr.clone(); out.extend(&output.stdout); let out = String::from_utf8_lossy(&out); // Check to see if the link failed with "unrecognized command line option: // '-no-pie'" for gcc or "unknown argument: '-no-pie'" for clang. If so, // reperform the link step without the -no-pie option. This is safe because // if the linker doesn't support -no-pie then it should not default to // linking executables as pie. Different versions of gcc seem to use // different quotes in the error message so don't check for them. if sess.target.linker_is_gnu && flavor != LinkerFlavor::Ld && (out.contains("unrecognized command line option") || out.contains("unknown argument")) && out.contains("-no-pie") && cmd.get_args().iter().any(|e| e.to_string_lossy() == "-no-pie") { info!("linker output: {:?}", out); warn!("Linker does not support -no-pie command line option. Retrying without."); for arg in cmd.take_args() { if arg.to_string_lossy() != "-no-pie" { cmd.arg(arg); } } info!("{:?}", &cmd); continue; } // Detect '-static-pie' used with an older version of gcc or clang not supporting it. // Fallback from '-static-pie' to '-static' in that case. if sess.target.linker_is_gnu && flavor != LinkerFlavor::Ld && (out.contains("unrecognized command line option") || out.contains("unknown argument")) && (out.contains("-static-pie") || out.contains("--no-dynamic-linker")) && cmd.get_args().iter().any(|e| e.to_string_lossy() == "-static-pie") { info!("linker output: {:?}", out); warn!( "Linker does not support -static-pie command line option. Retrying with -static instead." ); // Mirror `add_(pre,post)_link_objects` to replace CRT objects. let self_contained = crt_objects_fallback(sess, crate_type); let opts = &sess.target; let pre_objects = if self_contained { &opts.pre_link_objects_fallback } else { &opts.pre_link_objects }; let post_objects = if self_contained { &opts.post_link_objects_fallback } else { &opts.post_link_objects }; let get_objects = |objects: &CrtObjects, kind| { objects .get(&kind) .iter() .copied() .flatten() .map(|obj| get_object_file_path(sess, obj, self_contained).into_os_string()) .collect::>() }; let pre_objects_static_pie = get_objects(pre_objects, LinkOutputKind::StaticPicExe); let post_objects_static_pie = get_objects(post_objects, LinkOutputKind::StaticPicExe); let mut pre_objects_static = get_objects(pre_objects, LinkOutputKind::StaticNoPicExe); let mut post_objects_static = get_objects(post_objects, LinkOutputKind::StaticNoPicExe); // Assume that we know insertion positions for the replacement arguments from replaced // arguments, which is true for all supported targets. assert!(pre_objects_static.is_empty() || !pre_objects_static_pie.is_empty()); assert!(post_objects_static.is_empty() || !post_objects_static_pie.is_empty()); for arg in cmd.take_args() { if arg.to_string_lossy() == "-static-pie" { // Replace the output kind. cmd.arg("-static"); } else if pre_objects_static_pie.contains(&arg) { // Replace the pre-link objects (replace the first and remove the rest). cmd.args(mem::take(&mut pre_objects_static)); } else if post_objects_static_pie.contains(&arg) { // Replace the post-link objects (replace the first and remove the rest). cmd.args(mem::take(&mut post_objects_static)); } else { cmd.arg(arg); } } info!("{:?}", &cmd); continue; } // Here's a terribly awful hack that really shouldn't be present in any // compiler. Here an environment variable is supported to automatically // retry the linker invocation if the linker looks like it segfaulted. // // Gee that seems odd, normally segfaults are things we want to know // about! Unfortunately though in rust-lang/rust#38878 we're // experiencing the linker segfaulting on Travis quite a bit which is // causing quite a bit of pain to land PRs when they spuriously fail // due to a segfault. // // The issue #38878 has some more debugging information on it as well, // but this unfortunately looks like it's just a race condition in // macOS's linker with some thread pool working in the background. It // seems that no one currently knows a fix for this so in the meantime // we're left with this... if !retry_on_segfault || i > 3 { break; } let msg_segv = "clang: error: unable to execute command: Segmentation fault: 11"; let msg_bus = "clang: error: unable to execute command: Bus error: 10"; if out.contains(msg_segv) || out.contains(msg_bus) { warn!( "looks like the linker segfaulted when we tried to call it, \ automatically retrying again. cmd = {:?}, out = {}.", cmd, out, ); continue; } if is_illegal_instruction(&output.status) { warn!( "looks like the linker hit an illegal instruction when we \ tried to call it, automatically retrying again. cmd = {:?}, ]\ out = {}, status = {}.", cmd, out, output.status, ); continue; } #[cfg(unix)] fn is_illegal_instruction(status: &ExitStatus) -> bool { use std::os::unix::prelude::*; status.signal() == Some(libc::SIGILL) } #[cfg(windows)] fn is_illegal_instruction(_status: &ExitStatus) -> bool { false } } fn escape_string(s: &[u8]) -> String { str::from_utf8(s).map(|s| s.to_owned()).unwrap_or_else(|_| { let mut x = "Non-UTF-8 output: ".to_string(); x.extend(s.iter().flat_map(|&b| ascii::escape_default(b)).map(char::from)); x }) } match prog { Ok(prog) => { if !prog.status.success() { let mut output = prog.stderr.clone(); output.extend_from_slice(&prog.stdout); sess.struct_err(&format!( "linking with `{}` failed: {}", linker_path.display(), prog.status )) .note(&format!("{:?}", &cmd)) .note(&escape_stdout_stderr_string(&output)) .emit(); // If MSVC's `link.exe` was expected but the return code // is not a Microsoft LNK error then suggest a way to fix or // install the Visual Studio build tools. if let Some(code) = prog.status.code() { if sess.target.is_like_msvc && flavor == LinkerFlavor::Msvc // Respect the command line override && sess.opts.cg.linker.is_none() // Match exactly "link.exe" && linker_path.to_str() == Some("link.exe") // All Microsoft `link.exe` linking error codes are // four digit numbers in the range 1000 to 9999 inclusive && (code < 1000 || code > 9999) { let is_vs_installed = windows_registry::find_vs_version().is_ok(); let has_linker = windows_registry::find_tool( &sess.opts.target_triple.triple(), "link.exe", ) .is_some(); sess.note_without_error("`link.exe` returned an unexpected error"); if is_vs_installed && has_linker { // the linker is broken sess.note_without_error( "the Visual Studio build tools may need to be repaired \ using the Visual Studio installer", ); sess.note_without_error( "or a necessary component may be missing from the \ \"C++ build tools\" workload", ); } else if is_vs_installed { // the linker is not installed sess.note_without_error( "in the Visual Studio installer, ensure the \ \"C++ build tools\" workload is selected", ); } else { // visual studio is not installed sess.note_without_error( "you may need to install Visual Studio build tools with the \ \"C++ build tools\" workload", ); } } } sess.abort_if_errors(); } info!("linker stderr:\n{}", escape_stdout_stderr_string(&prog.stderr)); info!("linker stdout:\n{}", escape_stdout_stderr_string(&prog.stdout)); } Err(e) => { let linker_not_found = e.kind() == io::ErrorKind::NotFound; let mut linker_error = { if linker_not_found { sess.struct_err(&format!("linker `{}` not found", linker_path.display())) } else { sess.struct_err(&format!( "could not exec the linker `{}`", linker_path.display() )) } }; linker_error.note(&e.to_string()); if !linker_not_found { linker_error.note(&format!("{:?}", &cmd)); } linker_error.emit(); if sess.target.is_like_msvc && linker_not_found { sess.note_without_error( "the msvc targets depend on the msvc linker \ but `link.exe` was not found", ); sess.note_without_error( "please ensure that VS 2013, VS 2015, VS 2017 or VS 2019 \ was installed with the Visual C++ option", ); } sess.abort_if_errors(); } } match sess.split_debuginfo() { // If split debug information is disabled or located in individual files // there's nothing to do here. SplitDebuginfo::Off | SplitDebuginfo::Unpacked => {} // If packed split-debuginfo is requested, but the final compilation // doesn't actually have any debug information, then we skip this step. SplitDebuginfo::Packed if sess.opts.debuginfo == DebugInfo::None => {} // On macOS the external `dsymutil` tool is used to create the packed // debug information. Note that this will read debug information from // the objects on the filesystem which we'll clean up later. SplitDebuginfo::Packed if sess.target.is_like_osx => { let prog = Command::new("dsymutil").arg(out_filename).output(); match prog { Ok(prog) => { if !prog.status.success() { let mut output = prog.stderr.clone(); output.extend_from_slice(&prog.stdout); sess.struct_warn(&format!( "processing debug info with `dsymutil` failed: {}", prog.status )) .note(&escape_string(&output)) .emit(); } } Err(e) => sess.fatal(&format!("unable to run `dsymutil`: {}", e)), } } // On MSVC packed debug information is produced by the linker itself so // there's no need to do anything else here. SplitDebuginfo::Packed if sess.target.is_like_msvc => {} // ... and otherwise we're processing a `*.dwp` packed dwarf file. SplitDebuginfo::Packed => link_dwarf_object(sess, &out_filename), } } fn link_sanitizers(sess: &Session, crate_type: CrateType, linker: &mut dyn Linker) { // On macOS the runtimes are distributed as dylibs which should be linked to // both executables and dynamic shared objects. Everywhere else the runtimes // are currently distributed as static liraries which should be linked to // executables only. let needs_runtime = match crate_type { CrateType::Executable => true, CrateType::Dylib | CrateType::Cdylib | CrateType::ProcMacro => sess.target.is_like_osx, CrateType::Rlib | CrateType::Staticlib => false, }; if !needs_runtime { return; } let sanitizer = sess.opts.debugging_opts.sanitizer; if sanitizer.contains(SanitizerSet::ADDRESS) { link_sanitizer_runtime(sess, linker, "asan"); } if sanitizer.contains(SanitizerSet::LEAK) { link_sanitizer_runtime(sess, linker, "lsan"); } if sanitizer.contains(SanitizerSet::MEMORY) { link_sanitizer_runtime(sess, linker, "msan"); } if sanitizer.contains(SanitizerSet::THREAD) { link_sanitizer_runtime(sess, linker, "tsan"); } if sanitizer.contains(SanitizerSet::HWADDRESS) { link_sanitizer_runtime(sess, linker, "hwasan"); } } fn link_sanitizer_runtime(sess: &Session, linker: &mut dyn Linker, name: &str) { fn find_sanitizer_runtime(sess: &Session, filename: &String) -> PathBuf { let session_tlib = filesearch::make_target_lib_path(&sess.sysroot, sess.opts.target_triple.triple()); let path = session_tlib.join(&filename); if path.exists() { return session_tlib; } else { let default_sysroot = filesearch::get_or_default_sysroot(); let default_tlib = filesearch::make_target_lib_path( &default_sysroot, sess.opts.target_triple.triple(), ); return default_tlib; } } let channel = option_env!("CFG_RELEASE_CHANNEL") .map(|channel| format!("-{}", channel)) .unwrap_or_default(); match sess.opts.target_triple.triple() { "aarch64-apple-darwin" | "x86_64-apple-darwin" => { // On Apple platforms, the sanitizer is always built as a dylib, and // LLVM will link to `@rpath/*.dylib`, so we need to specify an // rpath to the library as well (the rpath should be absolute, see // PR #41352 for details). let filename = format!("rustc{}_rt.{}", channel, name); let path = find_sanitizer_runtime(&sess, &filename); let rpath = path.to_str().expect("non-utf8 component in path"); linker.args(&["-Wl,-rpath", "-Xlinker", rpath]); linker.link_dylib(Symbol::intern(&filename)); } "aarch64-fuchsia" | "aarch64-unknown-linux-gnu" | "x86_64-fuchsia" | "x86_64-unknown-freebsd" | "x86_64-unknown-linux-gnu" => { let filename = format!("librustc{}_rt.{}.a", channel, name); let path = find_sanitizer_runtime(&sess, &filename).join(&filename); linker.link_whole_rlib(&path); } _ => {} } } /// Returns a boolean indicating whether the specified crate should be ignored /// during LTO. /// /// Crates ignored during LTO are not lumped together in the "massive object /// file" that we create and are linked in their normal rlib states. See /// comments below for what crates do not participate in LTO. /// /// It's unusual for a crate to not participate in LTO. Typically only /// compiler-specific and unstable crates have a reason to not participate in /// LTO. pub fn ignored_for_lto(sess: &Session, info: &CrateInfo, cnum: CrateNum) -> bool { // If our target enables builtin function lowering in LLVM then the // crates providing these functions don't participate in LTO (e.g. // no_builtins or compiler builtins crates). !sess.target.no_builtins && (info.compiler_builtins == Some(cnum) || info.is_no_builtins.contains(&cnum)) } fn linker_and_flavor(sess: &Session) -> (PathBuf, LinkerFlavor) { fn infer_from( sess: &Session, linker: Option, flavor: Option, ) -> Option<(PathBuf, LinkerFlavor)> { match (linker, flavor) { (Some(linker), Some(flavor)) => Some((linker, flavor)), // only the linker flavor is known; use the default linker for the selected flavor (None, Some(flavor)) => Some(( PathBuf::from(match flavor { LinkerFlavor::Em => { if cfg!(windows) { "emcc.bat" } else { "emcc" } } LinkerFlavor::Gcc => { if cfg!(any(target_os = "solaris", target_os = "illumos")) { // On historical Solaris systems, "cc" may have // been Sun Studio, which is not flag-compatible // with "gcc". This history casts a long shadow, // and many modern illumos distributions today // ship GCC as "gcc" without also making it // available as "cc". "gcc" } else { "cc" } } LinkerFlavor::Ld => "ld", LinkerFlavor::Msvc => "link.exe", LinkerFlavor::Lld(_) => "lld", LinkerFlavor::PtxLinker => "rust-ptx-linker", }), flavor, )), (Some(linker), None) => { let stem = linker.file_stem().and_then(|stem| stem.to_str()).unwrap_or_else(|| { sess.fatal("couldn't extract file stem from specified linker") }); let flavor = if stem == "emcc" { LinkerFlavor::Em } else if stem == "gcc" || stem.ends_with("-gcc") || stem == "clang" || stem.ends_with("-clang") { LinkerFlavor::Gcc } else if stem == "ld" || stem == "ld.lld" || stem.ends_with("-ld") { LinkerFlavor::Ld } else if stem == "link" || stem == "lld-link" { LinkerFlavor::Msvc } else if stem == "lld" || stem == "rust-lld" { LinkerFlavor::Lld(sess.target.lld_flavor) } else { // fall back to the value in the target spec sess.target.linker_flavor }; Some((linker, flavor)) } (None, None) => None, } } // linker and linker flavor specified via command line have precedence over what the target // specification specifies if let Some(ret) = infer_from(sess, sess.opts.cg.linker.clone(), sess.opts.cg.linker_flavor) { return ret; } if let Some(ret) = infer_from( sess, sess.target.linker.clone().map(PathBuf::from), Some(sess.target.linker_flavor), ) { return ret; } bug!("Not enough information provided to determine how to invoke the linker"); } /// Returns a boolean indicating whether we should preserve the object files on /// the filesystem for their debug information. This is often useful with /// split-dwarf like schemes. fn preserve_objects_for_their_debuginfo(sess: &Session) -> bool { // If the objects don't have debuginfo there's nothing to preserve. if sess.opts.debuginfo == config::DebugInfo::None { return false; } // If we're only producing artifacts that are archives, no need to preserve // the objects as they're losslessly contained inside the archives. let output_linked = sess.crate_types().iter().any(|&x| x != CrateType::Rlib && x != CrateType::Staticlib); if !output_linked { return false; } // "unpacked" split debuginfo means that we leave object files as the // debuginfo is found in the original object files themselves sess.split_debuginfo() == SplitDebuginfo::Unpacked } pub fn archive_search_paths(sess: &Session) -> Vec { sess.target_filesearch(PathKind::Native).search_path_dirs() } enum RlibFlavor { Normal, StaticlibBase, } fn print_native_static_libs(sess: &Session, all_native_libs: &[NativeLib]) { let lib_args: Vec<_> = all_native_libs .iter() .filter(|l| relevant_lib(sess, l)) .filter_map(|lib| { let name = lib.name?; match lib.kind { NativeLibKind::StaticNoBundle | NativeLibKind::Dylib | NativeLibKind::Unspecified => { if sess.target.is_like_msvc { Some(format!("{}.lib", name)) } else { Some(format!("-l{}", name)) } } NativeLibKind::Framework => { // ld-only syntax, since there are no frameworks in MSVC Some(format!("-framework {}", name)) } // These are included, no need to print them NativeLibKind::StaticBundle | NativeLibKind::RawDylib => None, } }) .collect(); if !lib_args.is_empty() { sess.note_without_error( "Link against the following native artifacts when linking \ against this static library. The order and any duplication \ can be significant on some platforms.", ); // Prefix for greppability sess.note_without_error(&format!("native-static-libs: {}", &lib_args.join(" "))); } } fn get_object_file_path(sess: &Session, name: &str, self_contained: bool) -> PathBuf { let fs = sess.target_filesearch(PathKind::Native); let file_path = fs.get_lib_path().join(name); if file_path.exists() { return file_path; } // Special directory with objects used only in self-contained linkage mode if self_contained { let file_path = fs.get_self_contained_lib_path().join(name); if file_path.exists() { return file_path; } } for search_path in fs.search_paths() { let file_path = search_path.dir.join(name); if file_path.exists() { return file_path; } } PathBuf::from(name) } fn exec_linker( sess: &Session, cmd: &Command, out_filename: &Path, tmpdir: &Path, ) -> io::Result { // When attempting to spawn the linker we run a risk of blowing out the // size limits for spawning a new process with respect to the arguments // we pass on the command line. // // Here we attempt to handle errors from the OS saying "your list of // arguments is too big" by reinvoking the linker again with an `@`-file // that contains all the arguments. The theory is that this is then // accepted on all linkers and the linker will read all its options out of // there instead of looking at the command line. if !cmd.very_likely_to_exceed_some_spawn_limit() { match cmd.command().stdout(Stdio::piped()).stderr(Stdio::piped()).spawn() { Ok(child) => { let output = child.wait_with_output(); flush_linked_file(&output, out_filename)?; return output; } Err(ref e) if command_line_too_big(e) => { info!("command line to linker was too big: {}", e); } Err(e) => return Err(e), } } info!("falling back to passing arguments to linker via an @-file"); let mut cmd2 = cmd.clone(); let mut args = String::new(); for arg in cmd2.take_args() { args.push_str( &Escape { arg: arg.to_str().unwrap(), is_like_msvc: sess.target.is_like_msvc } .to_string(), ); args.push('\n'); } let file = tmpdir.join("linker-arguments"); let bytes = if sess.target.is_like_msvc { let mut out = Vec::with_capacity((1 + args.len()) * 2); // start the stream with a UTF-16 BOM for c in std::iter::once(0xFEFF).chain(args.encode_utf16()) { // encode in little endian out.push(c as u8); out.push((c >> 8) as u8); } out } else { args.into_bytes() }; fs::write(&file, &bytes)?; cmd2.arg(format!("@{}", file.display())); info!("invoking linker {:?}", cmd2); let output = cmd2.output(); flush_linked_file(&output, out_filename)?; return output; #[cfg(unix)] fn flush_linked_file(_: &io::Result, _: &Path) -> io::Result<()> { Ok(()) } #[cfg(windows)] fn flush_linked_file( command_output: &io::Result, out_filename: &Path, ) -> io::Result<()> { // On Windows, under high I/O load, output buffers are sometimes not flushed, // even long after process exit, causing nasty, non-reproducible output bugs. // // File::sync_all() calls FlushFileBuffers() down the line, which solves the problem. // // А full writeup of the original Chrome bug can be found at // randomascii.wordpress.com/2018/02/25/compiler-bug-linker-bug-windows-kernel-bug/amp if let &Ok(ref out) = command_output { if out.status.success() { if let Ok(of) = fs::OpenOptions::new().write(true).open(out_filename) { of.sync_all()?; } } } Ok(()) } #[cfg(unix)] fn command_line_too_big(err: &io::Error) -> bool { err.raw_os_error() == Some(::libc::E2BIG) } #[cfg(windows)] fn command_line_too_big(err: &io::Error) -> bool { const ERROR_FILENAME_EXCED_RANGE: i32 = 206; err.raw_os_error() == Some(ERROR_FILENAME_EXCED_RANGE) } struct Escape<'a> { arg: &'a str, is_like_msvc: bool, } impl<'a> fmt::Display for Escape<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.is_like_msvc { // This is "documented" at // https://docs.microsoft.com/en-us/cpp/build/reference/at-specify-a-linker-response-file // // Unfortunately there's not a great specification of the // syntax I could find online (at least) but some local // testing showed that this seemed sufficient-ish to catch // at least a few edge cases. write!(f, "\"")?; for c in self.arg.chars() { match c { '"' => write!(f, "\\{}", c)?, c => write!(f, "{}", c)?, } } write!(f, "\"")?; } else { // This is documented at https://linux.die.net/man/1/ld, namely: // // > Options in file are separated by whitespace. A whitespace // > character may be included in an option by surrounding the // > entire option in either single or double quotes. Any // > character (including a backslash) may be included by // > prefixing the character to be included with a backslash. // // We put an argument on each line, so all we need to do is // ensure the line is interpreted as one whole argument. for c in self.arg.chars() { match c { '\\' | ' ' => write!(f, "\\{}", c)?, c => write!(f, "{}", c)?, } } } Ok(()) } } } fn link_output_kind(sess: &Session, crate_type: CrateType) -> LinkOutputKind { let kind = match (crate_type, sess.crt_static(Some(crate_type)), sess.relocation_model()) { (CrateType::Executable, _, _) if sess.is_wasi_reactor() => LinkOutputKind::WasiReactorExe, (CrateType::Executable, false, RelocModel::Pic) => LinkOutputKind::DynamicPicExe, (CrateType::Executable, false, _) => LinkOutputKind::DynamicNoPicExe, (CrateType::Executable, true, RelocModel::Pic) => LinkOutputKind::StaticPicExe, (CrateType::Executable, true, _) => LinkOutputKind::StaticNoPicExe, (_, true, _) => LinkOutputKind::StaticDylib, (_, false, _) => LinkOutputKind::DynamicDylib, }; // Adjust the output kind to target capabilities. let opts = &sess.target; let pic_exe_supported = opts.position_independent_executables; let static_pic_exe_supported = opts.static_position_independent_executables; let static_dylib_supported = opts.crt_static_allows_dylibs; match kind { LinkOutputKind::DynamicPicExe if !pic_exe_supported => LinkOutputKind::DynamicNoPicExe, LinkOutputKind::StaticPicExe if !static_pic_exe_supported => LinkOutputKind::StaticNoPicExe, LinkOutputKind::StaticDylib if !static_dylib_supported => LinkOutputKind::DynamicDylib, _ => kind, } } // Returns true if linker is located within sysroot fn detect_self_contained_mingw(sess: &Session) -> bool { let (linker, _) = linker_and_flavor(&sess); // Assume `-C linker=rust-lld` as self-contained mode if linker == Path::new("rust-lld") { return true; } let linker_with_extension = if cfg!(windows) && linker.extension().is_none() { linker.with_extension("exe") } else { linker }; for dir in env::split_paths(&env::var_os("PATH").unwrap_or_default()) { let full_path = dir.join(&linker_with_extension); // If linker comes from sysroot assume self-contained mode if full_path.is_file() && !full_path.starts_with(&sess.sysroot) { return false; } } true } /// Whether we link to our own CRT objects instead of relying on gcc to pull them. /// We only provide such support for a very limited number of targets. fn crt_objects_fallback(sess: &Session, crate_type: CrateType) -> bool { if let Some(self_contained) = sess.opts.cg.link_self_contained { return self_contained; } match sess.target.crt_objects_fallback { // FIXME: Find a better heuristic for "native musl toolchain is available", // based on host and linker path, for example. // (https://github.com/rust-lang/rust/pull/71769#issuecomment-626330237). Some(CrtObjectsFallback::Musl) => sess.crt_static(Some(crate_type)), Some(CrtObjectsFallback::Mingw) => { sess.host == sess.target && sess.target.vendor != "uwp" && detect_self_contained_mingw(&sess) } // FIXME: Figure out cases in which WASM needs to link with a native toolchain. Some(CrtObjectsFallback::Wasm) => true, None => false, } } /// Add pre-link object files defined by the target spec. fn add_pre_link_objects( cmd: &mut dyn Linker, sess: &Session, link_output_kind: LinkOutputKind, self_contained: bool, ) { let opts = &sess.target; let objects = if self_contained { &opts.pre_link_objects_fallback } else { &opts.pre_link_objects }; for obj in objects.get(&link_output_kind).iter().copied().flatten() { cmd.add_object(&get_object_file_path(sess, obj, self_contained)); } } /// Add post-link object files defined by the target spec. fn add_post_link_objects( cmd: &mut dyn Linker, sess: &Session, link_output_kind: LinkOutputKind, self_contained: bool, ) { let opts = &sess.target; let objects = if self_contained { &opts.post_link_objects_fallback } else { &opts.post_link_objects }; for obj in objects.get(&link_output_kind).iter().copied().flatten() { cmd.add_object(&get_object_file_path(sess, obj, self_contained)); } } /// Add arbitrary "pre-link" args defined by the target spec or from command line. /// FIXME: Determine where exactly these args need to be inserted. fn add_pre_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) { if let Some(args) = sess.target.pre_link_args.get(&flavor) { cmd.args(args); } cmd.args(&sess.opts.debugging_opts.pre_link_args); } /// Add a link script embedded in the target, if applicable. fn add_link_script(cmd: &mut dyn Linker, sess: &Session, tmpdir: &Path, crate_type: CrateType) { match (crate_type, &sess.target.link_script) { (CrateType::Cdylib | CrateType::Executable, Some(script)) => { if !sess.target.linker_is_gnu { sess.fatal("can only use link script when linking with GNU-like linker"); } let file_name = ["rustc", &sess.target.llvm_target, "linkfile.ld"].join("-"); let path = tmpdir.join(file_name); if let Err(e) = fs::write(&path, script) { sess.fatal(&format!("failed to write link script to {}: {}", path.display(), e)); } cmd.arg("--script"); cmd.arg(path); } _ => {} } } /// Add arbitrary "user defined" args defined from command line and by `#[link_args]` attributes. /// FIXME: Determine where exactly these args need to be inserted. fn add_user_defined_link_args( cmd: &mut dyn Linker, sess: &Session, codegen_results: &CodegenResults, ) { cmd.args(&sess.opts.cg.link_args); cmd.args(&*codegen_results.crate_info.link_args); } /// Add arbitrary "late link" args defined by the target spec. /// FIXME: Determine where exactly these args need to be inserted. fn add_late_link_args( cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor, crate_type: CrateType, codegen_results: &CodegenResults, ) { let any_dynamic_crate = crate_type == CrateType::Dylib || codegen_results.crate_info.dependency_formats.iter().any(|(ty, list)| { *ty == crate_type && list.iter().any(|&linkage| linkage == Linkage::Dynamic) }); if any_dynamic_crate { if let Some(args) = sess.target.late_link_args_dynamic.get(&flavor) { cmd.args(args); } } else { if let Some(args) = sess.target.late_link_args_static.get(&flavor) { cmd.args(args); } } if let Some(args) = sess.target.late_link_args.get(&flavor) { cmd.args(args); } } /// Add arbitrary "post-link" args defined by the target spec. /// FIXME: Determine where exactly these args need to be inserted. fn add_post_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) { if let Some(args) = sess.target.post_link_args.get(&flavor) { cmd.args(args); } } /// Add object files containing code from the current crate. fn add_local_crate_regular_objects(cmd: &mut dyn Linker, codegen_results: &CodegenResults) { for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) { cmd.add_object(obj); } } /// Add object files for allocator code linked once for the whole crate tree. fn add_local_crate_allocator_objects(cmd: &mut dyn Linker, codegen_results: &CodegenResults) { if let Some(obj) = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref()) { cmd.add_object(obj); } } /// Add object files containing metadata for the current crate. fn add_local_crate_metadata_objects( cmd: &mut dyn Linker, crate_type: CrateType, codegen_results: &CodegenResults, ) { // When linking a dynamic library, we put the metadata into a section of the // executable. This metadata is in a separate object file from the main // object file, so we link that in here. if crate_type == CrateType::Dylib || crate_type == CrateType::ProcMacro { if let Some(obj) = codegen_results.metadata_module.as_ref().and_then(|m| m.object.as_ref()) { cmd.add_object(obj); } } } /// Link native libraries corresponding to the current crate and all libraries corresponding to /// all its dependency crates. /// FIXME: Consider combining this with the functions above adding object files for the local crate. fn link_local_crate_native_libs_and_dependent_crate_libs<'a, B: ArchiveBuilder<'a>>( cmd: &mut dyn Linker, sess: &'a Session, crate_type: CrateType, codegen_results: &CodegenResults, tmpdir: &Path, ) { // Take careful note of the ordering of the arguments we pass to the linker // here. Linkers will assume that things on the left depend on things to the // right. Things on the right cannot depend on things on the left. This is // all formally implemented in terms of resolving symbols (libs on the right // resolve unknown symbols of libs on the left, but not vice versa). // // For this reason, we have organized the arguments we pass to the linker as // such: // // 1. The local object that LLVM just generated // 2. Local native libraries // 3. Upstream rust libraries // 4. Upstream native libraries // // The rationale behind this ordering is that those items lower down in the // list can't depend on items higher up in the list. For example nothing can // depend on what we just generated (e.g., that'd be a circular dependency). // Upstream rust libraries are not allowed to depend on our local native // libraries as that would violate the structure of the DAG, in that // scenario they are required to link to them as well in a shared fashion. // // Note that upstream rust libraries may contain native dependencies as // well, but they also can't depend on what we just started to add to the // link line. And finally upstream native libraries can't depend on anything // in this DAG so far because they're only dylibs and dylibs can only depend // on other dylibs (e.g., other native deps). // // If -Zlink-native-libraries=false is set, then the assumption is that an // external build system already has the native dependencies defined, and it // will provide them to the linker itself. if sess.opts.debugging_opts.link_native_libraries { add_local_native_libraries(cmd, sess, codegen_results); } add_upstream_rust_crates::(cmd, sess, codegen_results, crate_type, tmpdir); if sess.opts.debugging_opts.link_native_libraries { add_upstream_native_libraries(cmd, sess, codegen_results, crate_type); } } /// Add sysroot and other globally set directories to the directory search list. fn add_library_search_dirs(cmd: &mut dyn Linker, sess: &Session, self_contained: bool) { // The default library location, we need this to find the runtime. // The location of crates will be determined as needed. let lib_path = sess.target_filesearch(PathKind::All).get_lib_path(); cmd.include_path(&fix_windows_verbatim_for_gcc(&lib_path)); // Special directory with libraries used only in self-contained linkage mode if self_contained { let lib_path = sess.target_filesearch(PathKind::All).get_self_contained_lib_path(); cmd.include_path(&fix_windows_verbatim_for_gcc(&lib_path)); } } /// Add options making relocation sections in the produced ELF files read-only /// and suppressing lazy binding. fn add_relro_args(cmd: &mut dyn Linker, sess: &Session) { match sess.opts.debugging_opts.relro_level.unwrap_or(sess.target.relro_level) { RelroLevel::Full => cmd.full_relro(), RelroLevel::Partial => cmd.partial_relro(), RelroLevel::Off => cmd.no_relro(), RelroLevel::None => {} } } /// Add library search paths used at runtime by dynamic linkers. fn add_rpath_args( cmd: &mut dyn Linker, sess: &Session, codegen_results: &CodegenResults, out_filename: &Path, ) { // FIXME (#2397): At some point we want to rpath our guesses as to // where extern libraries might live, based on the // addl_lib_search_paths if sess.opts.cg.rpath { let target_triple = sess.opts.target_triple.triple(); let mut get_install_prefix_lib_path = || { let install_prefix = option_env!("CFG_PREFIX").expect("CFG_PREFIX"); let tlib = filesearch::relative_target_lib_path(&sess.sysroot, target_triple); let mut path = PathBuf::from(install_prefix); path.push(&tlib); path }; let mut rpath_config = RPathConfig { used_crates: &codegen_results.crate_info.used_crates_dynamic, out_filename: out_filename.to_path_buf(), has_rpath: sess.target.has_rpath, is_like_osx: sess.target.is_like_osx, linker_is_gnu: sess.target.linker_is_gnu, get_install_prefix_lib_path: &mut get_install_prefix_lib_path, }; cmd.args(&rpath::get_rpath_flags(&mut rpath_config)); } } /// Produce the linker command line containing linker path and arguments. /// `NO-OPT-OUT` marks the arguments that cannot be removed from the command line /// by the user without creating a custom target specification. /// `OBJECT-FILES` specify whether the arguments can add object files. /// `CUSTOMIZATION-POINT` means that arbitrary arguments defined by the user /// or by the target spec can be inserted here. /// `AUDIT-ORDER` - need to figure out whether the option is order-dependent or not. fn linker_with_args<'a, B: ArchiveBuilder<'a>>( path: &Path, flavor: LinkerFlavor, sess: &'a Session, crate_type: CrateType, tmpdir: &Path, out_filename: &Path, codegen_results: &CodegenResults, target_cpu: &str, ) -> Command { let crt_objects_fallback = crt_objects_fallback(sess, crate_type); let base_cmd = get_linker(sess, path, flavor, crt_objects_fallback); // FIXME: Move `/LIBPATH` addition for uwp targets from the linker construction // to the linker args construction. assert!(base_cmd.get_args().is_empty() || sess.target.vendor == "uwp"); let cmd = &mut *codegen_results.linker_info.to_linker(base_cmd, &sess, flavor, target_cpu); let link_output_kind = link_output_kind(sess, crate_type); // NO-OPT-OUT, OBJECT-FILES-MAYBE, CUSTOMIZATION-POINT add_pre_link_args(cmd, sess, flavor); // NO-OPT-OUT, OBJECT-FILES-NO add_apple_sdk(cmd, sess, flavor); // NO-OPT-OUT add_link_script(cmd, sess, tmpdir, crate_type); // NO-OPT-OUT, OBJECT-FILES-NO, AUDIT-ORDER if sess.target.is_like_fuchsia && crate_type == CrateType::Executable { let prefix = if sess.opts.debugging_opts.sanitizer.contains(SanitizerSet::ADDRESS) { "asan/" } else { "" }; cmd.arg(format!("--dynamic-linker={}ld.so.1", prefix)); } // NO-OPT-OUT, OBJECT-FILES-NO, AUDIT-ORDER if sess.target.eh_frame_header { cmd.add_eh_frame_header(); } // NO-OPT-OUT, OBJECT-FILES-NO if crt_objects_fallback { cmd.no_crt_objects(); } // NO-OPT-OUT, OBJECT-FILES-YES add_pre_link_objects(cmd, sess, link_output_kind, crt_objects_fallback); // NO-OPT-OUT, OBJECT-FILES-NO, AUDIT-ORDER if sess.target.is_like_emscripten { cmd.arg("-s"); cmd.arg(if sess.panic_strategy() == PanicStrategy::Abort { "DISABLE_EXCEPTION_CATCHING=1" } else { "DISABLE_EXCEPTION_CATCHING=0" }); } // OBJECT-FILES-YES, AUDIT-ORDER link_sanitizers(sess, crate_type, cmd); // OBJECT-FILES-NO, AUDIT-ORDER // Linker plugins should be specified early in the list of arguments // FIXME: How "early" exactly? cmd.linker_plugin_lto(); // NO-OPT-OUT, OBJECT-FILES-NO, AUDIT-ORDER // FIXME: Order-dependent, at least relatively to other args adding searh directories. add_library_search_dirs(cmd, sess, crt_objects_fallback); // OBJECT-FILES-YES add_local_crate_regular_objects(cmd, codegen_results); // NO-OPT-OUT, OBJECT-FILES-NO, AUDIT-ORDER cmd.output_filename(out_filename); // OBJECT-FILES-NO, AUDIT-ORDER if crate_type == CrateType::Executable && sess.target.is_like_windows { if let Some(ref s) = codegen_results.windows_subsystem { cmd.subsystem(s); } } // NO-OPT-OUT, OBJECT-FILES-NO, AUDIT-ORDER // If we're building something like a dynamic library then some platforms // need to make sure that all symbols are exported correctly from the // dynamic library. cmd.export_symbols(tmpdir, crate_type); // OBJECT-FILES-YES add_local_crate_metadata_objects(cmd, crate_type, codegen_results); // OBJECT-FILES-YES add_local_crate_allocator_objects(cmd, codegen_results); // OBJECT-FILES-NO, AUDIT-ORDER // FIXME: Order dependent, applies to the following objects. Where should it be placed? // Try to strip as much out of the generated object by removing unused // sections if possible. See more comments in linker.rs if !sess.link_dead_code() { let keep_metadata = crate_type == CrateType::Dylib; cmd.gc_sections(keep_metadata); } // NO-OPT-OUT, OBJECT-FILES-NO, AUDIT-ORDER cmd.set_output_kind(link_output_kind, out_filename); // OBJECT-FILES-NO, AUDIT-ORDER add_relro_args(cmd, sess); // OBJECT-FILES-NO, AUDIT-ORDER // Pass optimization flags down to the linker. cmd.optimize(); // OBJECT-FILES-NO, AUDIT-ORDER // Pass debuginfo and strip flags down to the linker. cmd.debuginfo(sess.opts.debugging_opts.strip); // OBJECT-FILES-NO, AUDIT-ORDER // We want to prevent the compiler from accidentally leaking in any system libraries, // so by default we tell linkers not to link to any default libraries. if !sess.opts.cg.default_linker_libraries && sess.target.no_default_libraries { cmd.no_default_libraries(); } // OBJECT-FILES-YES link_local_crate_native_libs_and_dependent_crate_libs::( cmd, sess, crate_type, codegen_results, tmpdir, ); // OBJECT-FILES-NO, AUDIT-ORDER if sess.opts.cg.profile_generate.enabled() || sess.opts.debugging_opts.instrument_coverage { cmd.pgo_gen(); } // OBJECT-FILES-NO, AUDIT-ORDER if sess.opts.cg.control_flow_guard != CFGuard::Disabled { cmd.control_flow_guard(); } // OBJECT-FILES-NO, AUDIT-ORDER add_rpath_args(cmd, sess, codegen_results, out_filename); // OBJECT-FILES-MAYBE, CUSTOMIZATION-POINT add_user_defined_link_args(cmd, sess, codegen_results); // NO-OPT-OUT, OBJECT-FILES-NO, AUDIT-ORDER cmd.finalize(); // NO-OPT-OUT, OBJECT-FILES-MAYBE, CUSTOMIZATION-POINT add_late_link_args(cmd, sess, flavor, crate_type, codegen_results); // NO-OPT-OUT, OBJECT-FILES-YES add_post_link_objects(cmd, sess, link_output_kind, crt_objects_fallback); // NO-OPT-OUT, OBJECT-FILES-MAYBE, CUSTOMIZATION-POINT add_post_link_args(cmd, sess, flavor); cmd.take_cmd() } /// # Native library linking /// /// User-supplied library search paths (-L on the command line). These are the same paths used to /// find Rust crates, so some of them may have been added already by the previous crate linking /// code. This only allows them to be found at compile time so it is still entirely up to outside /// forces to make sure that library can be found at runtime. /// /// Also note that the native libraries linked here are only the ones located in the current crate. /// Upstream crates with native library dependencies may have their native library pulled in above. fn add_local_native_libraries( cmd: &mut dyn Linker, sess: &Session, codegen_results: &CodegenResults, ) { let filesearch = sess.target_filesearch(PathKind::All); for search_path in filesearch.search_paths() { match search_path.kind { PathKind::Framework => { cmd.framework_path(&search_path.dir); } _ => { cmd.include_path(&fix_windows_verbatim_for_gcc(&search_path.dir)); } } } let relevant_libs = codegen_results.crate_info.used_libraries.iter().filter(|l| relevant_lib(sess, l)); let search_path = archive_search_paths(sess); for lib in relevant_libs { let name = match lib.name { Some(l) => l, None => continue, }; match lib.kind { NativeLibKind::Dylib | NativeLibKind::Unspecified => cmd.link_dylib(name), NativeLibKind::Framework => cmd.link_framework(name), NativeLibKind::StaticNoBundle => cmd.link_staticlib(name), NativeLibKind::StaticBundle => cmd.link_whole_staticlib(name, &search_path), NativeLibKind::RawDylib => { // FIXME(#58713): Proper handling for raw dylibs. bug!("raw_dylib feature not yet implemented"); } } } } /// # Rust Crate linking /// /// Rust crates are not considered at all when creating an rlib output. All dependencies will be /// linked when producing the final output (instead of the intermediate rlib version). fn add_upstream_rust_crates<'a, B: ArchiveBuilder<'a>>( cmd: &mut dyn Linker, sess: &'a Session, codegen_results: &CodegenResults, crate_type: CrateType, tmpdir: &Path, ) { // All of the heavy lifting has previously been accomplished by the // dependency_format module of the compiler. This is just crawling the // output of that module, adding crates as necessary. // // Linking to a rlib involves just passing it to the linker (the linker // will slurp up the object files inside), and linking to a dynamic library // involves just passing the right -l flag. let (_, data) = codegen_results .crate_info .dependency_formats .iter() .find(|(ty, _)| *ty == crate_type) .expect("failed to find crate type in dependency format list"); // Invoke get_used_crates to ensure that we get a topological sorting of // crates. let deps = &codegen_results.crate_info.used_crates_dynamic; // There's a few internal crates in the standard library (aka libcore and // libstd) which actually have a circular dependence upon one another. This // currently arises through "weak lang items" where libcore requires things // like `rust_begin_unwind` but libstd ends up defining it. To get this // circular dependence to work correctly in all situations we'll need to be // sure to correctly apply the `--start-group` and `--end-group` options to // GNU linkers, otherwise if we don't use any other symbol from the standard // library it'll get discarded and the whole application won't link. // // In this loop we're calculating the `group_end`, after which crate to // pass `--end-group` and `group_start`, before which crate to pass // `--start-group`. We currently do this by passing `--end-group` after // the first crate (when iterating backwards) that requires a lang item // defined somewhere else. Once that's set then when we've defined all the // necessary lang items we'll pass `--start-group`. // // Note that this isn't amazing logic for now but it should do the trick // for the current implementation of the standard library. let mut group_end = None; let mut group_start = None; // Crates available for linking thus far. let mut available = FxHashSet::default(); // Crates required to satisfy dependencies discovered so far. let mut required = FxHashSet::default(); let info = &codegen_results.crate_info; for &(cnum, _) in deps.iter().rev() { if let Some(missing) = info.missing_lang_items.get(&cnum) { let missing_crates = missing.iter().map(|i| info.lang_item_to_crate.get(i).copied()); required.extend(missing_crates); } required.insert(Some(cnum)); available.insert(Some(cnum)); if required.len() > available.len() && group_end.is_none() { group_end = Some(cnum); } if required.len() == available.len() && group_end.is_some() { group_start = Some(cnum); break; } } // If we didn't end up filling in all lang items from upstream crates then // we'll be filling it in with our crate. This probably means we're the // standard library itself, so skip this for now. if group_end.is_some() && group_start.is_none() { group_end = None; } let mut compiler_builtins = None; for &(cnum, _) in deps.iter() { if group_start == Some(cnum) { cmd.group_start(); } // We may not pass all crates through to the linker. Some crates may // appear statically in an existing dylib, meaning we'll pick up all the // symbols from the dylib. let src = &codegen_results.crate_info.used_crate_source[&cnum]; match data[cnum.as_usize() - 1] { _ if codegen_results.crate_info.profiler_runtime == Some(cnum) => { add_static_crate::(cmd, sess, codegen_results, tmpdir, crate_type, cnum); } // compiler-builtins are always placed last to ensure that they're // linked correctly. _ if codegen_results.crate_info.compiler_builtins == Some(cnum) => { assert!(compiler_builtins.is_none()); compiler_builtins = Some(cnum); } Linkage::NotLinked | Linkage::IncludedFromDylib => {} Linkage::Static => { add_static_crate::(cmd, sess, codegen_results, tmpdir, crate_type, cnum); } Linkage::Dynamic => add_dynamic_crate(cmd, sess, &src.dylib.as_ref().unwrap().0), } if group_end == Some(cnum) { cmd.group_end(); } } // compiler-builtins are always placed last to ensure that they're // linked correctly. // We must always link the `compiler_builtins` crate statically. Even if it // was already "included" in a dylib (e.g., `libstd` when `-C prefer-dynamic` // is used) if let Some(cnum) = compiler_builtins { add_static_crate::(cmd, sess, codegen_results, tmpdir, crate_type, cnum); } // Converts a library file-stem into a cc -l argument fn unlib<'a>(target: &Target, stem: &'a str) -> &'a str { if stem.starts_with("lib") && !target.is_like_windows { &stem[3..] } else { stem } } // Adds the static "rlib" versions of all crates to the command line. // There's a bit of magic which happens here specifically related to LTO and // dynamic libraries. Specifically: // // * For LTO, we remove upstream object files. // * For dylibs we remove metadata and bytecode from upstream rlibs // // When performing LTO, almost(*) all of the bytecode from the upstream // libraries has already been included in our object file output. As a // result we need to remove the object files in the upstream libraries so // the linker doesn't try to include them twice (or whine about duplicate // symbols). We must continue to include the rest of the rlib, however, as // it may contain static native libraries which must be linked in. // // (*) Crates marked with `#![no_builtins]` don't participate in LTO and // their bytecode wasn't included. The object files in those libraries must // still be passed to the linker. // // When making a dynamic library, linkers by default don't include any // object files in an archive if they're not necessary to resolve the link. // We basically want to convert the archive (rlib) to a dylib, though, so we // *do* want everything included in the output, regardless of whether the // linker thinks it's needed or not. As a result we must use the // --whole-archive option (or the platform equivalent). When using this // option the linker will fail if there are non-objects in the archive (such // as our own metadata and/or bytecode). All in all, for rlibs to be // entirely included in dylibs, we need to remove all non-object files. // // Note, however, that if we're not doing LTO or we're not producing a dylib // (aka we're making an executable), we can just pass the rlib blindly to // the linker (fast) because it's fine if it's not actually included as // we're at the end of the dependency chain. fn add_static_crate<'a, B: ArchiveBuilder<'a>>( cmd: &mut dyn Linker, sess: &'a Session, codegen_results: &CodegenResults, tmpdir: &Path, crate_type: CrateType, cnum: CrateNum, ) { let src = &codegen_results.crate_info.used_crate_source[&cnum]; let cratepath = &src.rlib.as_ref().unwrap().0; // See the comment above in `link_staticlib` and `link_rlib` for why if // there's a static library that's not relevant we skip all object // files. let native_libs = &codegen_results.crate_info.native_libraries[&cnum]; let skip_native = native_libs .iter() .any(|lib| lib.kind == NativeLibKind::StaticBundle && !relevant_lib(sess, lib)); if (!are_upstream_rust_objects_already_included(sess) || ignored_for_lto(sess, &codegen_results.crate_info, cnum)) && crate_type != CrateType::Dylib && !skip_native { cmd.link_rlib(&fix_windows_verbatim_for_gcc(cratepath)); return; } let dst = tmpdir.join(cratepath.file_name().unwrap()); let name = cratepath.file_name().unwrap().to_str().unwrap(); let name = &name[3..name.len() - 5]; // chop off lib/.rlib sess.prof.generic_activity_with_arg("link_altering_rlib", name).run(|| { let mut archive = ::new(sess, &dst, Some(cratepath)); archive.update_symbols(); let mut any_objects = false; for f in archive.src_files() { if f == METADATA_FILENAME { archive.remove_file(&f); continue; } let canonical = f.replace("-", "_"); let canonical_name = name.replace("-", "_"); let is_rust_object = canonical.starts_with(&canonical_name) && looks_like_rust_object_file(&f); // If we've been requested to skip all native object files // (those not generated by the rust compiler) then we can skip // this file. See above for why we may want to do this. let skip_because_cfg_say_so = skip_native && !is_rust_object; // If we're performing LTO and this is a rust-generated object // file, then we don't need the object file as it's part of the // LTO module. Note that `#![no_builtins]` is excluded from LTO, // though, so we let that object file slide. let skip_because_lto = are_upstream_rust_objects_already_included(sess) && is_rust_object && (sess.target.no_builtins || !codegen_results.crate_info.is_no_builtins.contains(&cnum)); if skip_because_cfg_say_so || skip_because_lto { archive.remove_file(&f); } else { any_objects = true; } } if !any_objects { return; } archive.build(); // If we're creating a dylib, then we need to include the // whole of each object in our archive into that artifact. This is // because a `dylib` can be reused as an intermediate artifact. // // Note, though, that we don't want to include the whole of a // compiler-builtins crate (e.g., compiler-rt) because it'll get // repeatedly linked anyway. if crate_type == CrateType::Dylib && codegen_results.crate_info.compiler_builtins != Some(cnum) { cmd.link_whole_rlib(&fix_windows_verbatim_for_gcc(&dst)); } else { cmd.link_rlib(&fix_windows_verbatim_for_gcc(&dst)); } }); } // Same thing as above, but for dynamic crates instead of static crates. fn add_dynamic_crate(cmd: &mut dyn Linker, sess: &Session, cratepath: &Path) { // Just need to tell the linker about where the library lives and // what its name is let parent = cratepath.parent(); if let Some(dir) = parent { cmd.include_path(&fix_windows_verbatim_for_gcc(dir)); } let filestem = cratepath.file_stem().unwrap().to_str().unwrap(); cmd.link_rust_dylib( Symbol::intern(&unlib(&sess.target, filestem)), parent.unwrap_or(Path::new("")), ); } } /// Link in all of our upstream crates' native dependencies. Remember that all of these upstream /// native dependencies are all non-static dependencies. We've got two cases then: /// /// 1. The upstream crate is an rlib. In this case we *must* link in the native dependency because /// the rlib is just an archive. /// /// 2. The upstream crate is a dylib. In order to use the dylib, we have to have the dependency /// present on the system somewhere. Thus, we don't gain a whole lot from not linking in the /// dynamic dependency to this crate as well. /// /// The use case for this is a little subtle. In theory the native dependencies of a crate are /// purely an implementation detail of the crate itself, but the problem arises with generic and /// inlined functions. If a generic function calls a native function, then the generic function /// must be instantiated in the target crate, meaning that the native symbol must also be resolved /// in the target crate. fn add_upstream_native_libraries( cmd: &mut dyn Linker, sess: &Session, codegen_results: &CodegenResults, crate_type: CrateType, ) { // Be sure to use a topological sorting of crates because there may be // interdependencies between native libraries. When passing -nodefaultlibs, // for example, almost all native libraries depend on libc, so we have to // make sure that's all the way at the right (liblibc is near the base of // the dependency chain). // // This passes RequireStatic, but the actual requirement doesn't matter, // we're just getting an ordering of crate numbers, we're not worried about // the paths. let (_, data) = codegen_results .crate_info .dependency_formats .iter() .find(|(ty, _)| *ty == crate_type) .expect("failed to find crate type in dependency format list"); let crates = &codegen_results.crate_info.used_crates_static; for &(cnum, _) in crates { for lib in codegen_results.crate_info.native_libraries[&cnum].iter() { let name = match lib.name { Some(l) => l, None => continue, }; if !relevant_lib(sess, &lib) { continue; } match lib.kind { NativeLibKind::Dylib | NativeLibKind::Unspecified => cmd.link_dylib(name), NativeLibKind::Framework => cmd.link_framework(name), NativeLibKind::StaticNoBundle => { // Link "static-nobundle" native libs only if the crate they originate from // is being linked statically to the current crate. If it's linked dynamically // or is an rlib already included via some other dylib crate, the symbols from // native libs will have already been included in that dylib. if data[cnum.as_usize() - 1] == Linkage::Static { cmd.link_staticlib(name) } } // ignore statically included native libraries here as we've // already included them when we included the rust library // previously NativeLibKind::StaticBundle => {} NativeLibKind::RawDylib => { // FIXME(#58713): Proper handling for raw dylibs. bug!("raw_dylib feature not yet implemented"); } } } } } fn relevant_lib(sess: &Session, lib: &NativeLib) -> bool { match lib.cfg { Some(ref cfg) => rustc_attr::cfg_matches(cfg, &sess.parse_sess, None), None => true, } } fn are_upstream_rust_objects_already_included(sess: &Session) -> bool { match sess.lto() { config::Lto::Fat => true, config::Lto::Thin => { // If we defer LTO to the linker, we haven't run LTO ourselves, so // any upstream object files have not been copied yet. !sess.opts.cg.linker_plugin_lto.enabled() } config::Lto::No | config::Lto::ThinLocal => false, } } fn add_apple_sdk(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) { let arch = &sess.target.arch; let os = &sess.target.os; let llvm_target = &sess.target.llvm_target; if sess.target.vendor != "apple" || !matches!(os.as_str(), "ios" | "tvos") || flavor != LinkerFlavor::Gcc { return; } let sdk_name = match (arch.as_str(), os.as_str()) { ("aarch64", "tvos") => "appletvos", ("x86_64", "tvos") => "appletvsimulator", ("arm", "ios") => "iphoneos", ("aarch64", "ios") if llvm_target.contains("macabi") => "macosx", ("aarch64", "ios") => "iphoneos", ("x86", "ios") => "iphonesimulator", ("x86_64", "ios") if llvm_target.contains("macabi") => "macosx", ("x86_64", "ios") => "iphonesimulator", _ => { sess.err(&format!("unsupported arch `{}` for os `{}`", arch, os)); return; } }; let sdk_root = match get_apple_sdk_root(sdk_name) { Ok(s) => s, Err(e) => { sess.err(&e); return; } }; if llvm_target.contains("macabi") { cmd.args(&["-target", llvm_target]) } else { let arch_name = llvm_target.split('-').next().expect("LLVM target must have a hyphen"); cmd.args(&["-arch", arch_name]) } cmd.args(&["-isysroot", &sdk_root, "-Wl,-syslibroot", &sdk_root]); } fn get_apple_sdk_root(sdk_name: &str) -> Result { // Following what clang does // (https://github.com/llvm/llvm-project/blob/ // 296a80102a9b72c3eda80558fb78a3ed8849b341/clang/lib/Driver/ToolChains/Darwin.cpp#L1661-L1678) // to allow the SDK path to be set. (For clang, xcrun sets // SDKROOT; for rustc, the user or build system can set it, or we // can fall back to checking for xcrun on PATH.) if let Ok(sdkroot) = env::var("SDKROOT") { let p = Path::new(&sdkroot); match sdk_name { // Ignore `SDKROOT` if it's clearly set for the wrong platform. "appletvos" if sdkroot.contains("TVSimulator.platform") || sdkroot.contains("MacOSX.platform") => {} "appletvsimulator" if sdkroot.contains("TVOS.platform") || sdkroot.contains("MacOSX.platform") => {} "iphoneos" if sdkroot.contains("iPhoneSimulator.platform") || sdkroot.contains("MacOSX.platform") => {} "iphonesimulator" if sdkroot.contains("iPhoneOS.platform") || sdkroot.contains("MacOSX.platform") => { } "macosx10.15" if sdkroot.contains("iPhoneOS.platform") || sdkroot.contains("iPhoneSimulator.platform") => {} // Ignore `SDKROOT` if it's not a valid path. _ if !p.is_absolute() || p == Path::new("/") || !p.exists() => {} _ => return Ok(sdkroot), } } let res = Command::new("xcrun").arg("--show-sdk-path").arg("-sdk").arg(sdk_name).output().and_then( |output| { if output.status.success() { Ok(String::from_utf8(output.stdout).unwrap()) } else { let error = String::from_utf8(output.stderr); let error = format!("process exit with error: {}", error.unwrap()); Err(io::Error::new(io::ErrorKind::Other, &error[..])) } }, ); match res { Ok(output) => Ok(output.trim().to_string()), Err(e) => Err(format!("failed to get {} SDK path: {}", sdk_name, e)), } }