use std::ptr; use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, AutoDiffItem, DiffActivity, DiffMode}; use rustc_codegen_ssa::ModuleCodegen; use rustc_codegen_ssa::back::write::ModuleConfig; use rustc_errors::FatalError; use rustc_session::config::Lto; use tracing::{debug, trace}; use crate::back::write::{llvm_err, llvm_optimize}; use crate::builder::SBuilder; use crate::context::SimpleCx; use crate::declare::declare_simple_fn; use crate::errors::LlvmError; use crate::llvm::AttributePlace::Function; use crate::llvm::{Metadata, True}; use crate::value::Value; use crate::{CodegenContext, LlvmCodegenBackend, ModuleLlvm, attributes, llvm}; fn get_params(fnc: &Value) -> Vec<&Value> { unsafe { let param_num = llvm::LLVMCountParams(fnc) as usize; let mut fnc_args: Vec<&Value> = vec![]; fnc_args.reserve(param_num); llvm::LLVMGetParams(fnc, fnc_args.as_mut_ptr()); fnc_args.set_len(param_num); fnc_args } } /// When differentiating `fn_to_diff`, take a `outer_fn` and generate another /// function with expected naming and calling conventions[^1] which will be /// discovered by the enzyme LLVM pass and its body populated with the differentiated /// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated /// function and handle the differences between the Rust calling convention and /// Enzyme. /// [^1]: // FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to // cover some assumptions of enzyme/autodiff, which could lead to UB otherwise. fn generate_enzyme_call<'ll>( cx: &SimpleCx<'ll>, fn_to_diff: &'ll Value, outer_fn: &'ll Value, attrs: AutoDiffAttrs, ) { let inputs = attrs.input_activity; let output = attrs.ret_activity; // We have to pick the name depending on whether we want forward or reverse mode autodiff. // FIXME(ZuseZ4): The new pass based approach should not need the {Forward/Reverse}First method anymore, since // it will handle higher-order derivatives correctly automatically (in theory). Currently // higher-order derivatives fail, so we should debug that before adjusting this code. let mut ad_name: String = match attrs.mode { DiffMode::Forward => "__enzyme_fwddiff", DiffMode::Reverse => "__enzyme_autodiff", DiffMode::ForwardFirst => "__enzyme_fwddiff", DiffMode::ReverseFirst => "__enzyme_autodiff", _ => panic!("logic bug in autodiff, unrecognized mode"), } .to_string(); // add outer_fn name to ad_name to make it unique, in case users apply autodiff to multiple // functions. Unwrap will only panic, if LLVM gave us an invalid string. let name = llvm::get_value_name(outer_fn); let outer_fn_name = std::ffi::CStr::from_bytes_with_nul(name).unwrap().to_str().unwrap(); ad_name.push_str(outer_fn_name.to_string().as_str()); // Let us assume the user wrote the following function square: // // ```llvm // define double @square(double %x) { // entry: // %0 = fmul double %x, %x // ret double %0 // } // ``` // // The user now applies autodiff to the function square, in which case fn_to_diff will be `square`. // Our macro generates the following placeholder code (slightly simplified): // // ```llvm // define double @dsquare(double %x) { // ; placeholder code // return 0.0; // } // ``` // // so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder // code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call. // Again, the arguments to all functions are slightly simplified. // ```llvm // declare double @__enzyme_autodiff_square(...) // // define double @dsquare(double %x) { // entry: // %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x) // ret double %0 // } // ``` unsafe { // On LLVM-IR, we can luckily declare __enzyme_ functions without specifying the input // arguments. We do however need to declare them with their correct return type. // We already figured the correct return type out in our frontend, when generating the outer_fn, // so we can now just go ahead and use that. FIXME(ZuseZ4): This doesn't handle sret yet. let fn_ty = llvm::LLVMGlobalGetValueType(outer_fn); let ret_ty = llvm::LLVMGetReturnType(fn_ty); // LLVM can figure out the input types on it's own, so we take a shortcut here. let enzyme_ty = llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True); //FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and // think a bit more about what should go here. let cc = llvm::LLVMGetFunctionCallConv(outer_fn); let ad_fn = declare_simple_fn( cx, &ad_name, llvm::CallConv::try_from(cc).expect("invalid callconv"), llvm::UnnamedAddr::No, llvm::Visibility::Default, enzyme_ty, ); // Otherwise LLVM might inline our temporary code before the enzyme pass has a chance to // do it's work. let attr = llvm::AttributeKind::NoInline.create_attr(cx.llcx); attributes::apply_to_llfn(ad_fn, Function, &[attr]); // first, remove all calls from fnc let entry = llvm::LLVMGetFirstBasicBlock(outer_fn); let br = llvm::LLVMRustGetTerminator(entry); llvm::LLVMRustEraseInstFromParent(br); let last_inst = llvm::LLVMRustGetLastInstruction(entry).unwrap(); let mut builder = SBuilder::build(cx, entry); let num_args = llvm::LLVMCountParams(&fn_to_diff); let mut args = Vec::with_capacity(num_args as usize + 1); args.push(fn_to_diff); let enzyme_const = cx.create_metadata("enzyme_const".to_string()).unwrap(); let enzyme_out = cx.create_metadata("enzyme_out".to_string()).unwrap(); let enzyme_dup = cx.create_metadata("enzyme_dup".to_string()).unwrap(); let enzyme_dupnoneed = cx.create_metadata("enzyme_dupnoneed".to_string()).unwrap(); let enzyme_primal_ret = cx.create_metadata("enzyme_primal_return".to_string()).unwrap(); match output { DiffActivity::Dual => { args.push(cx.get_metadata_value(enzyme_primal_ret)); } DiffActivity::Active => { args.push(cx.get_metadata_value(enzyme_primal_ret)); } _ => {} } trace!("matching autodiff arguments"); // We now handle the issue that Rust level arguments not always match the llvm-ir level // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on // llvm-ir level. The number of activities matches the number of Rust level arguments, so we // need to match those. // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it // using iterators and peek()? let mut outer_pos: usize = 0; let mut activity_pos = 0; let outer_args: Vec<&llvm::Value> = get_params(outer_fn); while activity_pos < inputs.len() { let activity = inputs[activity_pos as usize]; // Duplicated arguments received a shadow argument, into which enzyme will write the // gradient. let (activity, duplicated): (&Metadata, bool) = match activity { DiffActivity::None => panic!("not a valid input activity"), DiffActivity::Const => (enzyme_const, false), DiffActivity::Active => (enzyme_out, false), DiffActivity::ActiveOnly => (enzyme_out, false), DiffActivity::Dual => (enzyme_dup, true), DiffActivity::DualOnly => (enzyme_dupnoneed, true), DiffActivity::Duplicated => (enzyme_dup, true), DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true), DiffActivity::FakeActivitySize => (enzyme_const, false), }; let outer_arg = outer_args[outer_pos]; args.push(cx.get_metadata_value(activity)); args.push(outer_arg); if duplicated { // We know that duplicated args by construction have a following argument, // so this can not be out of bounds. let next_outer_arg = outer_args[outer_pos + 1]; let next_outer_ty = cx.val_ty(next_outer_arg); // FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since // vectors behind references (&Vec) are already supported. Users can not pass a // Vec by value for reverse mode, so this would only help forward mode autodiff. let slice = { if activity_pos + 1 >= inputs.len() { // If there is no arg following our ptr, it also can't be a slice, // since that would lead to a ptr, int pair. false } else { let next_activity = inputs[activity_pos + 1]; // We analyze the MIR types and add this dummy activity if we visit a slice. next_activity == DiffActivity::FakeActivitySize } }; if slice { // A duplicated slice will have the following two outer_fn arguments: // (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call: // (..., metadata! enzyme_dup, ptr, ptr, int1, ...). // FIXME(ZuseZ4): We will upstream a safety check later which asserts that // int2 >= int1, which means the shadow vector is large enough to store the gradient. assert!(llvm::LLVMRustGetTypeKind(next_outer_ty) == llvm::TypeKind::Integer); let next_outer_arg2 = outer_args[outer_pos + 2]; let next_outer_ty2 = cx.val_ty(next_outer_arg2); assert!(llvm::LLVMRustGetTypeKind(next_outer_ty2) == llvm::TypeKind::Pointer); let next_outer_arg3 = outer_args[outer_pos + 3]; let next_outer_ty3 = cx.val_ty(next_outer_arg3); assert!(llvm::LLVMRustGetTypeKind(next_outer_ty3) == llvm::TypeKind::Integer); args.push(next_outer_arg2); args.push(cx.get_metadata_value(enzyme_const)); args.push(next_outer_arg); outer_pos += 4; activity_pos += 2; } else { // A duplicated pointer will have the following two outer_fn arguments: // (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call: // (..., metadata! enzyme_dup, ptr, ptr, ...). assert!(llvm::LLVMRustGetTypeKind(next_outer_ty) == llvm::TypeKind::Pointer); args.push(next_outer_arg); outer_pos += 2; activity_pos += 1; } } else { // We do not differentiate with resprect to this argument. // We already added the metadata and argument above, so just increase the counters. outer_pos += 1; activity_pos += 1; } } let call = builder.call(enzyme_ty, ad_fn, &args, None); // This part is a bit iffy. LLVM requires that a call to an inlineable function has some // metadata attachted to it, but we just created this code oota. Given that the // differentiated function already has partly confusing metadata, and given that this // affects nothing but the auttodiff IR, we take a shortcut and just steal metadata from the // dummy code which we inserted at a higher level. // FIXME(ZuseZ4): Work with Enzyme core devs to clarify what debug metadata issues we have, // and how to best improve it for enzyme core and rust-enzyme. let md_ty = cx.get_md_kind_id("dbg"); if llvm::LLVMRustHasMetadata(last_inst, md_ty) { let md = llvm::LLVMRustDIGetInstMetadata(last_inst) .expect("failed to get instruction metadata"); let md_todiff = cx.get_metadata_value(md); llvm::LLVMSetMetadata(call, md_ty, md_todiff); } else { // We don't panic, since depending on whether we are in debug or release mode, we might // have no debug info to copy, which would then be ok. trace!("no dbg info"); } // Now that we copied the metadata, get rid of dummy code. llvm::LLVMRustEraseInstBefore(entry, last_inst); llvm::LLVMRustEraseInstFromParent(last_inst); if cx.val_ty(outer_fn) != cx.type_void() { builder.ret(call); } else { builder.ret_void(); } // Let's crash in case that we messed something up above and generated invalid IR. llvm::LLVMRustVerifyFunction( outer_fn, llvm::LLVMRustVerifierFailureAction::LLVMAbortProcessAction, ); } } pub(crate) fn differentiate<'ll>( module: &'ll ModuleCodegen, cgcx: &CodegenContext, diff_items: Vec, config: &ModuleConfig, ) -> Result<(), FatalError> { for item in &diff_items { trace!("{}", item); } let diag_handler = cgcx.create_dcx(); let cx = SimpleCx { llmod: module.module_llvm.llmod(), llcx: module.module_llvm.llcx }; // Before dumping the module, we want all the TypeTrees to become part of the module. for item in diff_items.iter() { let name = item.source.clone(); let fn_def: Option<&llvm::Value> = cx.get_function(&name); let Some(fn_def) = fn_def else { return Err(llvm_err(diag_handler.handle(), LlvmError::PrepareAutoDiff { src: item.source.clone(), target: item.target.clone(), error: "could not find source function".to_owned(), })); }; debug!(?item.target); let fn_target: Option<&llvm::Value> = cx.get_function(&item.target); let Some(fn_target) = fn_target else { return Err(llvm_err(diag_handler.handle(), LlvmError::PrepareAutoDiff { src: item.source.clone(), target: item.target.clone(), error: "could not find target function".to_owned(), })); }; generate_enzyme_call(&cx, fn_def, fn_target, item.attrs.clone()); } // FIXME(ZuseZ4): support SanitizeHWAddress and prevent illegal/unsupported opts if let Some(opt_level) = config.opt_level { let opt_stage = match cgcx.lto { Lto::Fat => llvm::OptStage::PreLinkFatLTO, Lto::Thin | Lto::ThinLocal => llvm::OptStage::PreLinkThinLTO, _ if cgcx.opts.cg.linker_plugin_lto.enabled() => llvm::OptStage::PreLinkThinLTO, _ => llvm::OptStage::PreLinkNoLTO, }; // This is our second opt call, so now we run all opts, // to make sure we get the best performance. let skip_size_increasing_opts = false; trace!("running Module Optimization after differentiation"); unsafe { llvm_optimize( cgcx, diag_handler.handle(), module, config, opt_level, opt_stage, skip_size_increasing_opts, )? }; } trace!("done with differentiate()"); Ok(()) }