mod expr; mod pat; mod item; pub use item::AliasKind; mod module; pub use module::{ModulePath, ModulePathSuccess}; mod ty; mod path; pub use path::PathStyle; mod stmt; mod generics; use crate::ast::{ self, DUMMY_NODE_ID, AttrStyle, Attribute, BindingMode, CrateSugar, Ident, IsAsync, MacDelimiter, Mutability, Param, StrStyle, SelfKind, TyKind, Visibility, VisibilityKind, Unsafety, }; use crate::parse::{ParseSess, PResult, Directory, DirectoryOwnership, SeqSep, literal, token}; use crate::parse::diagnostics::{Error, dummy_arg}; use crate::parse::lexer::UnmatchedBrace; use crate::parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration}; use crate::parse::token::{Token, TokenKind, DelimToken}; use crate::print::pprust; use crate::ptr::P; use crate::source_map::{self, respan}; use crate::symbol::{kw, sym, Symbol}; use crate::tokenstream::{self, DelimSpan, TokenTree, TokenStream, TreeAndJoint}; use crate::ThinVec; use errors::{Applicability, DiagnosticId, FatalError}; use rustc_target::spec::abi::{self, Abi}; use syntax_pos::{Span, BytePos, DUMMY_SP, FileName}; use log::debug; use std::borrow::Cow; use std::{cmp, mem, slice}; use std::path::PathBuf; bitflags::bitflags! { struct Restrictions: u8 { const STMT_EXPR = 1 << 0; const NO_STRUCT_LITERAL = 1 << 1; } } #[derive(Clone, Copy, PartialEq, Debug)] crate enum SemiColonMode { Break, Ignore, Comma, } #[derive(Clone, Copy, PartialEq, Debug)] crate enum BlockMode { Break, Ignore, } /// The parsing configuration used to parse a parameter list (see `parse_fn_params`). struct ParamCfg { /// Is `self` is allowed as the first parameter? is_self_allowed: bool, /// Is `...` allowed as the tail of the parameter list? allow_c_variadic: bool, /// `is_name_required` decides if, per-parameter, /// the parameter must have a pattern or just a type. is_name_required: fn(&token::Token) -> bool, } /// Like `maybe_whole_expr`, but for things other than expressions. #[macro_export] macro_rules! maybe_whole { ($p:expr, $constructor:ident, |$x:ident| $e:expr) => { if let token::Interpolated(nt) = &$p.token.kind { if let token::$constructor(x) = &**nt { let $x = x.clone(); $p.bump(); return Ok($e); } } }; } /// If the next tokens are ill-formed `$ty::` recover them as `<$ty>::`. #[macro_export] macro_rules! maybe_recover_from_interpolated_ty_qpath { ($self: expr, $allow_qpath_recovery: expr) => { if $allow_qpath_recovery && $self.look_ahead(1, |t| t == &token::ModSep) { if let token::Interpolated(nt) = &$self.token.kind { if let token::NtTy(ty) = &**nt { let ty = ty.clone(); $self.bump(); return $self.maybe_recover_from_bad_qpath_stage_2($self.prev_span, ty); } } } } } fn maybe_append(mut lhs: Vec, mut rhs: Option>) -> Vec { if let Some(ref mut rhs) = rhs { lhs.append(rhs); } lhs } #[derive(Debug, Clone, Copy, PartialEq)] enum PrevTokenKind { DocComment, Comma, Plus, Interpolated, Eof, Ident, BitOr, Other, } // NOTE: `Ident`s are handled by `common.rs`. #[derive(Clone)] pub struct Parser<'a> { pub sess: &'a ParseSess, /// The current normalized token. /// "Normalized" means that some interpolated tokens /// (`$i: ident` and `$l: lifetime` meta-variables) are replaced /// with non-interpolated identifier and lifetime tokens they refer to. /// Perhaps the normalized / non-normalized setup can be simplified somehow. pub token: Token, /// The span of the current non-normalized token. meta_var_span: Option, /// The span of the previous non-normalized token. pub prev_span: Span, /// The kind of the previous normalized token (in simplified form). prev_token_kind: PrevTokenKind, restrictions: Restrictions, /// Used to determine the path to externally loaded source files. crate directory: Directory<'a>, /// `true` to parse sub-modules in other files. pub recurse_into_file_modules: bool, /// Name of the root module this parser originated from. If `None`, then the /// name is not known. This does not change while the parser is descending /// into modules, and sub-parsers have new values for this name. pub root_module_name: Option, crate expected_tokens: Vec, token_cursor: TokenCursor, desugar_doc_comments: bool, /// `true` we should configure out of line modules as we parse. pub cfg_mods: bool, /// This field is used to keep track of how many left angle brackets we have seen. This is /// required in order to detect extra leading left angle brackets (`<` characters) and error /// appropriately. /// /// See the comments in the `parse_path_segment` function for more details. crate unmatched_angle_bracket_count: u32, crate max_angle_bracket_count: u32, /// A list of all unclosed delimiters found by the lexer. If an entry is used for error recovery /// it gets removed from here. Every entry left at the end gets emitted as an independent /// error. crate unclosed_delims: Vec, crate last_unexpected_token_span: Option, crate last_type_ascription: Option<(Span, bool /* likely path typo */)>, /// If present, this `Parser` is not parsing Rust code but rather a macro call. crate subparser_name: Option<&'static str>, } impl<'a> Drop for Parser<'a> { fn drop(&mut self) { let diag = self.diagnostic(); emit_unclosed_delims(&mut self.unclosed_delims, diag); } } #[derive(Clone)] struct TokenCursor { frame: TokenCursorFrame, stack: Vec, } #[derive(Clone)] struct TokenCursorFrame { delim: token::DelimToken, span: DelimSpan, open_delim: bool, tree_cursor: tokenstream::Cursor, close_delim: bool, last_token: LastToken, } /// This is used in `TokenCursorFrame` above to track tokens that are consumed /// by the parser, and then that's transitively used to record the tokens that /// each parse AST item is created with. /// /// Right now this has two states, either collecting tokens or not collecting /// tokens. If we're collecting tokens we just save everything off into a local /// `Vec`. This should eventually though likely save tokens from the original /// token stream and just use slicing of token streams to avoid creation of a /// whole new vector. /// /// The second state is where we're passively not recording tokens, but the last /// token is still tracked for when we want to start recording tokens. This /// "last token" means that when we start recording tokens we'll want to ensure /// that this, the first token, is included in the output. /// /// You can find some more example usage of this in the `collect_tokens` method /// on the parser. #[derive(Clone)] crate enum LastToken { Collecting(Vec), Was(Option), } impl TokenCursorFrame { fn new(span: DelimSpan, delim: DelimToken, tts: &TokenStream) -> Self { TokenCursorFrame { delim, span, open_delim: delim == token::NoDelim, tree_cursor: tts.clone().into_trees(), close_delim: delim == token::NoDelim, last_token: LastToken::Was(None), } } } impl TokenCursor { fn next(&mut self) -> Token { loop { let tree = if !self.frame.open_delim { self.frame.open_delim = true; TokenTree::open_tt(self.frame.span.open, self.frame.delim) } else if let Some(tree) = self.frame.tree_cursor.next() { tree } else if !self.frame.close_delim { self.frame.close_delim = true; TokenTree::close_tt(self.frame.span.close, self.frame.delim) } else if let Some(frame) = self.stack.pop() { self.frame = frame; continue } else { return Token::new(token::Eof, DUMMY_SP); }; match self.frame.last_token { LastToken::Collecting(ref mut v) => v.push(tree.clone().into()), LastToken::Was(ref mut t) => *t = Some(tree.clone().into()), } match tree { TokenTree::Token(token) => return token, TokenTree::Delimited(sp, delim, tts) => { let frame = TokenCursorFrame::new(sp, delim, &tts); self.stack.push(mem::replace(&mut self.frame, frame)); } } } } fn next_desugared(&mut self) -> Token { let (name, sp) = match self.next() { Token { kind: token::DocComment(name), span } => (name, span), tok => return tok, }; let stripped = strip_doc_comment_decoration(&name.as_str()); // Searches for the occurrences of `"#*` and returns the minimum number of `#`s // required to wrap the text. let mut num_of_hashes = 0; let mut count = 0; for ch in stripped.chars() { count = match ch { '"' => 1, '#' if count > 0 => count + 1, _ => 0, }; num_of_hashes = cmp::max(num_of_hashes, count); } let delim_span = DelimSpan::from_single(sp); let body = TokenTree::Delimited( delim_span, token::Bracket, [ TokenTree::token(token::Ident(sym::doc, false), sp), TokenTree::token(token::Eq, sp), TokenTree::token(TokenKind::lit( token::StrRaw(num_of_hashes), Symbol::intern(&stripped), None ), sp), ] .iter().cloned().collect::().into(), ); self.stack.push(mem::replace(&mut self.frame, TokenCursorFrame::new( delim_span, token::NoDelim, &if doc_comment_style(&name.as_str()) == AttrStyle::Inner { [TokenTree::token(token::Pound, sp), TokenTree::token(token::Not, sp), body] .iter().cloned().collect::().into() } else { [TokenTree::token(token::Pound, sp), body] .iter().cloned().collect::().into() }, ))); self.next() } } #[derive(Clone, PartialEq)] crate enum TokenType { Token(TokenKind), Keyword(Symbol), Operator, Lifetime, Ident, Path, Type, Const, } impl TokenType { crate fn to_string(&self) -> String { match *self { TokenType::Token(ref t) => format!("`{}`", pprust::token_kind_to_string(t)), TokenType::Keyword(kw) => format!("`{}`", kw), TokenType::Operator => "an operator".to_string(), TokenType::Lifetime => "lifetime".to_string(), TokenType::Ident => "identifier".to_string(), TokenType::Path => "path".to_string(), TokenType::Type => "type".to_string(), TokenType::Const => "const".to_string(), } } } #[derive(Copy, Clone, Debug)] crate enum TokenExpectType { Expect, NoExpect, } impl<'a> Parser<'a> { pub fn new( sess: &'a ParseSess, tokens: TokenStream, directory: Option>, recurse_into_file_modules: bool, desugar_doc_comments: bool, subparser_name: Option<&'static str>, ) -> Self { let mut parser = Parser { sess, token: Token::dummy(), prev_span: DUMMY_SP, meta_var_span: None, prev_token_kind: PrevTokenKind::Other, restrictions: Restrictions::empty(), recurse_into_file_modules, directory: Directory { path: Cow::from(PathBuf::new()), ownership: DirectoryOwnership::Owned { relative: None } }, root_module_name: None, expected_tokens: Vec::new(), token_cursor: TokenCursor { frame: TokenCursorFrame::new( DelimSpan::dummy(), token::NoDelim, &tokens.into(), ), stack: Vec::new(), }, desugar_doc_comments, cfg_mods: true, unmatched_angle_bracket_count: 0, max_angle_bracket_count: 0, unclosed_delims: Vec::new(), last_unexpected_token_span: None, last_type_ascription: None, subparser_name, }; parser.token = parser.next_tok(); if let Some(directory) = directory { parser.directory = directory; } else if !parser.token.span.is_dummy() { if let Some(FileName::Real(path)) = &sess.source_map().lookup_char_pos(parser.token.span.lo()).file.unmapped_path { if let Some(directory_path) = path.parent() { parser.directory.path = Cow::from(directory_path.to_path_buf()); } } } parser.process_potential_macro_variable(); parser } fn next_tok(&mut self) -> Token { let mut next = if self.desugar_doc_comments { self.token_cursor.next_desugared() } else { self.token_cursor.next() }; if next.span.is_dummy() { // Tweak the location for better diagnostics, but keep syntactic context intact. next.span = self.prev_span.with_ctxt(next.span.ctxt()); } next } /// Converts the current token to a string using `self`'s reader. pub fn this_token_to_string(&self) -> String { pprust::token_to_string(&self.token) } crate fn token_descr(&self) -> Option<&'static str> { Some(match &self.token.kind { _ if self.token.is_special_ident() => "reserved identifier", _ if self.token.is_used_keyword() => "keyword", _ if self.token.is_unused_keyword() => "reserved keyword", token::DocComment(..) => "doc comment", _ => return None, }) } crate fn this_token_descr(&self) -> String { if let Some(prefix) = self.token_descr() { format!("{} `{}`", prefix, self.this_token_to_string()) } else { format!("`{}`", self.this_token_to_string()) } } crate fn unexpected(&mut self) -> PResult<'a, T> { match self.expect_one_of(&[], &[]) { Err(e) => Err(e), Ok(_) => unreachable!(), } } /// Expects and consumes the token `t`. Signals an error if the next token is not `t`. pub fn expect(&mut self, t: &TokenKind) -> PResult<'a, bool /* recovered */> { if self.expected_tokens.is_empty() { if self.token == *t { self.bump(); Ok(false) } else { self.unexpected_try_recover(t) } } else { self.expect_one_of(slice::from_ref(t), &[]) } } /// Expect next token to be edible or inedible token. If edible, /// then consume it; if inedible, then return without consuming /// anything. Signal a fatal error if next token is unexpected. pub fn expect_one_of( &mut self, edible: &[TokenKind], inedible: &[TokenKind], ) -> PResult<'a, bool /* recovered */> { if edible.contains(&self.token.kind) { self.bump(); Ok(false) } else if inedible.contains(&self.token.kind) { // leave it in the input Ok(false) } else if self.last_unexpected_token_span == Some(self.token.span) { FatalError.raise(); } else { self.expected_one_of_not_found(edible, inedible) } } pub fn parse_ident(&mut self) -> PResult<'a, ast::Ident> { self.parse_ident_common(true) } fn parse_ident_common(&mut self, recover: bool) -> PResult<'a, ast::Ident> { match self.token.kind { token::Ident(name, _) => { if self.token.is_reserved_ident() { let mut err = self.expected_ident_found(); if recover { err.emit(); } else { return Err(err); } } let span = self.token.span; self.bump(); Ok(Ident::new(name, span)) } _ => { Err(if self.prev_token_kind == PrevTokenKind::DocComment { self.span_fatal_err(self.prev_span, Error::UselessDocComment) } else { self.expected_ident_found() }) } } } /// Checks if the next token is `tok`, and returns `true` if so. /// /// This method will automatically add `tok` to `expected_tokens` if `tok` is not /// encountered. crate fn check(&mut self, tok: &TokenKind) -> bool { let is_present = self.token == *tok; if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); } is_present } /// Consumes a token 'tok' if it exists. Returns whether the given token was present. pub fn eat(&mut self, tok: &TokenKind) -> bool { let is_present = self.check(tok); if is_present { self.bump() } is_present } /// If the next token is the given keyword, returns `true` without eating it. /// An expectation is also added for diagnostics purposes. fn check_keyword(&mut self, kw: Symbol) -> bool { self.expected_tokens.push(TokenType::Keyword(kw)); self.token.is_keyword(kw) } /// If the next token is the given keyword, eats it and returns `true`. /// Otherwise, returns `false`. An expectation is also added for diagnostics purposes. pub fn eat_keyword(&mut self, kw: Symbol) -> bool { if self.check_keyword(kw) { self.bump(); true } else { false } } fn eat_keyword_noexpect(&mut self, kw: Symbol) -> bool { if self.token.is_keyword(kw) { self.bump(); true } else { false } } /// If the given word is not a keyword, signals an error. /// If the next token is not the given word, signals an error. /// Otherwise, eats it. fn expect_keyword(&mut self, kw: Symbol) -> PResult<'a, ()> { if !self.eat_keyword(kw) { self.unexpected() } else { Ok(()) } } fn check_or_expected(&mut self, ok: bool, typ: TokenType) -> bool { if ok { true } else { self.expected_tokens.push(typ); false } } crate fn check_ident(&mut self) -> bool { self.check_or_expected(self.token.is_ident(), TokenType::Ident) } fn check_path(&mut self) -> bool { self.check_or_expected(self.token.is_path_start(), TokenType::Path) } fn check_type(&mut self) -> bool { self.check_or_expected(self.token.can_begin_type(), TokenType::Type) } fn check_const_arg(&mut self) -> bool { self.check_or_expected(self.token.can_begin_const_arg(), TokenType::Const) } /// Checks to see if the next token is either `+` or `+=`. /// Otherwise returns `false`. fn check_plus(&mut self) -> bool { self.check_or_expected( self.token.is_like_plus(), TokenType::Token(token::BinOp(token::Plus)), ) } /// Expects and consumes a `+`. if `+=` is seen, replaces it with a `=` /// and continues. If a `+` is not seen, returns `false`. /// /// This is used when token-splitting `+=` into `+`. /// See issue #47856 for an example of when this may occur. fn eat_plus(&mut self) -> bool { self.expected_tokens.push(TokenType::Token(token::BinOp(token::Plus))); match self.token.kind { token::BinOp(token::Plus) => { self.bump(); true } token::BinOpEq(token::Plus) => { let span = self.token.span.with_lo(self.token.span.lo() + BytePos(1)); self.bump_with(token::Eq, span); true } _ => false, } } /// Expects and consumes an `&`. If `&&` is seen, replaces it with a single /// `&` and continues. If an `&` is not seen, signals an error. fn expect_and(&mut self) -> PResult<'a, ()> { self.expected_tokens.push(TokenType::Token(token::BinOp(token::And))); match self.token.kind { token::BinOp(token::And) => { self.bump(); Ok(()) } token::AndAnd => { let span = self.token.span.with_lo(self.token.span.lo() + BytePos(1)); Ok(self.bump_with(token::BinOp(token::And), span)) } _ => self.unexpected() } } /// Expects and consumes an `|`. If `||` is seen, replaces it with a single /// `|` and continues. If an `|` is not seen, signals an error. fn expect_or(&mut self) -> PResult<'a, ()> { self.expected_tokens.push(TokenType::Token(token::BinOp(token::Or))); match self.token.kind { token::BinOp(token::Or) => { self.bump(); Ok(()) } token::OrOr => { let span = self.token.span.with_lo(self.token.span.lo() + BytePos(1)); Ok(self.bump_with(token::BinOp(token::Or), span)) } _ => self.unexpected() } } fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option) { literal::expect_no_suffix(&self.sess.span_diagnostic, sp, kind, suffix) } /// Attempts to consume a `<`. If `<<` is seen, replaces it with a single /// `<` and continue. If `<-` is seen, replaces it with a single `<` /// and continue. If a `<` is not seen, returns false. /// /// This is meant to be used when parsing generics on a path to get the /// starting token. fn eat_lt(&mut self) -> bool { self.expected_tokens.push(TokenType::Token(token::Lt)); let ate = match self.token.kind { token::Lt => { self.bump(); true } token::BinOp(token::Shl) => { let span = self.token.span.with_lo(self.token.span.lo() + BytePos(1)); self.bump_with(token::Lt, span); true } token::LArrow => { let span = self.token.span.with_lo(self.token.span.lo() + BytePos(1)); self.bump_with(token::BinOp(token::Minus), span); true } _ => false, }; if ate { // See doc comment for `unmatched_angle_bracket_count`. self.unmatched_angle_bracket_count += 1; self.max_angle_bracket_count += 1; debug!("eat_lt: (increment) count={:?}", self.unmatched_angle_bracket_count); } ate } fn expect_lt(&mut self) -> PResult<'a, ()> { if !self.eat_lt() { self.unexpected() } else { Ok(()) } } /// Expects and consumes a single `>` token. if a `>>` is seen, replaces it /// with a single `>` and continues. If a `>` is not seen, signals an error. fn expect_gt(&mut self) -> PResult<'a, ()> { self.expected_tokens.push(TokenType::Token(token::Gt)); let ate = match self.token.kind { token::Gt => { self.bump(); Some(()) } token::BinOp(token::Shr) => { let span = self.token.span.with_lo(self.token.span.lo() + BytePos(1)); Some(self.bump_with(token::Gt, span)) } token::BinOpEq(token::Shr) => { let span = self.token.span.with_lo(self.token.span.lo() + BytePos(1)); Some(self.bump_with(token::Ge, span)) } token::Ge => { let span = self.token.span.with_lo(self.token.span.lo() + BytePos(1)); Some(self.bump_with(token::Eq, span)) } _ => None, }; match ate { Some(_) => { // See doc comment for `unmatched_angle_bracket_count`. if self.unmatched_angle_bracket_count > 0 { self.unmatched_angle_bracket_count -= 1; debug!("expect_gt: (decrement) count={:?}", self.unmatched_angle_bracket_count); } Ok(()) }, None => self.unexpected(), } } /// Parses a sequence, including the closing delimiter. The function /// `f` must consume tokens until reaching the next separator or /// closing bracket. pub fn parse_seq_to_end( &mut self, ket: &TokenKind, sep: SeqSep, f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>, ) -> PResult<'a, Vec> { let (val, _, recovered) = self.parse_seq_to_before_end(ket, sep, f)?; if !recovered { self.bump(); } Ok(val) } /// Parses a sequence, not including the closing delimiter. The function /// `f` must consume tokens until reaching the next separator or /// closing bracket. pub fn parse_seq_to_before_end( &mut self, ket: &TokenKind, sep: SeqSep, f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>, ) -> PResult<'a, (Vec, bool, bool)> { self.parse_seq_to_before_tokens(&[ket], sep, TokenExpectType::Expect, f) } fn expect_any_with_type(&mut self, kets: &[&TokenKind], expect: TokenExpectType) -> bool { kets.iter().any(|k| { match expect { TokenExpectType::Expect => self.check(k), TokenExpectType::NoExpect => self.token == **k, } }) } crate fn parse_seq_to_before_tokens( &mut self, kets: &[&TokenKind], sep: SeqSep, expect: TokenExpectType, mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>, ) -> PResult<'a, (Vec, bool /* trailing */, bool /* recovered */)> { let mut first = true; let mut recovered = false; let mut trailing = false; let mut v = vec![]; while !self.expect_any_with_type(kets, expect) { if let token::CloseDelim(..) | token::Eof = self.token.kind { break } if let Some(ref t) = sep.sep { if first { first = false; } else { match self.expect(t) { Ok(false) => {} Ok(true) => { recovered = true; break; } Err(mut e) => { // Attempt to keep parsing if it was a similar separator. if let Some(ref tokens) = t.similar_tokens() { if tokens.contains(&self.token.kind) { self.bump(); } } e.emit(); // Attempt to keep parsing if it was an omitted separator. match f(self) { Ok(t) => { v.push(t); continue; }, Err(mut e) => { e.cancel(); break; } } } } } } if sep.trailing_sep_allowed && self.expect_any_with_type(kets, expect) { trailing = true; break; } let t = f(self)?; v.push(t); } Ok((v, trailing, recovered)) } /// Parses a sequence, including the closing delimiter. The function /// `f` must consume tokens until reaching the next separator or /// closing bracket. fn parse_unspanned_seq( &mut self, bra: &TokenKind, ket: &TokenKind, sep: SeqSep, f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>, ) -> PResult<'a, (Vec, bool)> { self.expect(bra)?; let (result, trailing, recovered) = self.parse_seq_to_before_end(ket, sep, f)?; if !recovered { self.eat(ket); } Ok((result, trailing)) } fn parse_delim_comma_seq( &mut self, delim: DelimToken, f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>, ) -> PResult<'a, (Vec, bool)> { self.parse_unspanned_seq( &token::OpenDelim(delim), &token::CloseDelim(delim), SeqSep::trailing_allowed(token::Comma), f, ) } fn parse_paren_comma_seq( &mut self, f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>, ) -> PResult<'a, (Vec, bool)> { self.parse_delim_comma_seq(token::Paren, f) } /// Advance the parser by one token. pub fn bump(&mut self) { if self.prev_token_kind == PrevTokenKind::Eof { // Bumping after EOF is a bad sign, usually an infinite loop. self.bug("attempted to bump the parser past EOF (may be stuck in a loop)"); } self.prev_span = self.meta_var_span.take().unwrap_or(self.token.span); // Record last token kind for possible error recovery. self.prev_token_kind = match self.token.kind { token::DocComment(..) => PrevTokenKind::DocComment, token::Comma => PrevTokenKind::Comma, token::BinOp(token::Plus) => PrevTokenKind::Plus, token::BinOp(token::Or) => PrevTokenKind::BitOr, token::Interpolated(..) => PrevTokenKind::Interpolated, token::Eof => PrevTokenKind::Eof, token::Ident(..) => PrevTokenKind::Ident, _ => PrevTokenKind::Other, }; self.token = self.next_tok(); self.expected_tokens.clear(); // Check after each token. self.process_potential_macro_variable(); } /// Advances the parser using provided token as a next one. Use this when /// consuming a part of a token. For example a single `<` from `<<`. fn bump_with(&mut self, next: TokenKind, span: Span) { self.prev_span = self.token.span.with_hi(span.lo()); // It would be incorrect to record the kind of the current token, but // fortunately for tokens currently using `bump_with`, the // `prev_token_kind` will be of no use anyway. self.prev_token_kind = PrevTokenKind::Other; self.token = Token::new(next, span); self.expected_tokens.clear(); } /// Look-ahead `dist` tokens of `self.token` and get access to that token there. /// When `dist == 0` then the current token is looked at. pub fn look_ahead(&self, dist: usize, looker: impl FnOnce(&Token) -> R) -> R { if dist == 0 { return looker(&self.token); } let frame = &self.token_cursor.frame; looker(&match frame.tree_cursor.look_ahead(dist - 1) { Some(tree) => match tree { TokenTree::Token(token) => token, TokenTree::Delimited(dspan, delim, _) => Token::new(token::OpenDelim(delim), dspan.open), } None => Token::new(token::CloseDelim(frame.delim), frame.span.close) }) } /// Returns whether any of the given keywords are `dist` tokens ahead of the current one. fn is_keyword_ahead(&self, dist: usize, kws: &[Symbol]) -> bool { self.look_ahead(dist, |t| kws.iter().any(|&kw| t.is_keyword(kw))) } /// Parses asyncness: `async` or nothing. fn parse_asyncness(&mut self) -> IsAsync { if self.eat_keyword(kw::Async) { IsAsync::Async { closure_id: DUMMY_NODE_ID, return_impl_trait_id: DUMMY_NODE_ID, } } else { IsAsync::NotAsync } } /// Parses unsafety: `unsafe` or nothing. fn parse_unsafety(&mut self) -> Unsafety { if self.eat_keyword(kw::Unsafe) { Unsafety::Unsafe } else { Unsafety::Normal } } /// Parses mutability (`mut` or nothing). fn parse_mutability(&mut self) -> Mutability { if self.eat_keyword(kw::Mut) { Mutability::Mutable } else { Mutability::Immutable } } /// Possibly parses mutability (`const` or `mut`). fn parse_const_or_mut(&mut self) -> Option { if self.eat_keyword(kw::Mut) { Some(Mutability::Mutable) } else if self.eat_keyword(kw::Const) { Some(Mutability::Immutable) } else { None } } fn parse_field_name(&mut self) -> PResult<'a, Ident> { if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) = self.token.kind { self.expect_no_suffix(self.token.span, "a tuple index", suffix); self.bump(); Ok(Ident::new(symbol, self.prev_span)) } else { self.parse_ident_common(false) } } fn expect_delimited_token_tree(&mut self) -> PResult<'a, (MacDelimiter, TokenStream)> { let delim = match self.token.kind { token::OpenDelim(delim) => delim, _ => { let msg = "expected open delimiter"; let mut err = self.fatal(msg); err.span_label(self.token.span, msg); return Err(err) } }; let tts = match self.parse_token_tree() { TokenTree::Delimited(_, _, tts) => tts, _ => unreachable!(), }; let delim = match delim { token::Paren => MacDelimiter::Parenthesis, token::Bracket => MacDelimiter::Bracket, token::Brace => MacDelimiter::Brace, token::NoDelim => self.bug("unexpected no delimiter"), }; Ok((delim, tts.into())) } fn parse_or_use_outer_attributes( &mut self, already_parsed_attrs: Option>, ) -> PResult<'a, ThinVec> { if let Some(attrs) = already_parsed_attrs { Ok(attrs) } else { self.parse_outer_attributes().map(|a| a.into()) } } crate fn process_potential_macro_variable(&mut self) { self.token = match self.token.kind { token::Dollar if self.token.span.from_expansion() && self.look_ahead(1, |t| t.is_ident()) => { self.bump(); let name = match self.token.kind { token::Ident(name, _) => name, _ => unreachable!() }; let span = self.prev_span.to(self.token.span); self.diagnostic() .struct_span_fatal(span, &format!("unknown macro variable `{}`", name)) .span_label(span, "unknown macro variable") .emit(); self.bump(); return } token::Interpolated(ref nt) => { self.meta_var_span = Some(self.token.span); // Interpolated identifier and lifetime tokens are replaced with usual identifier // and lifetime tokens, so the former are never encountered during normal parsing. match **nt { token::NtIdent(ident, is_raw) => Token::new(token::Ident(ident.name, is_raw), ident.span), token::NtLifetime(ident) => Token::new(token::Lifetime(ident.name), ident.span), _ => return, } } _ => return, }; } /// Parses a single token tree from the input. crate fn parse_token_tree(&mut self) -> TokenTree { match self.token.kind { token::OpenDelim(..) => { let frame = mem::replace(&mut self.token_cursor.frame, self.token_cursor.stack.pop().unwrap()); self.token.span = frame.span.entire(); self.bump(); TokenTree::Delimited( frame.span, frame.delim, frame.tree_cursor.stream.into(), ) }, token::CloseDelim(_) | token::Eof => unreachable!(), _ => { let token = self.token.take(); self.bump(); TokenTree::Token(token) } } } /// Parses a stream of tokens into a list of `TokenTree`s, up to EOF. pub fn parse_all_token_trees(&mut self) -> PResult<'a, Vec> { let mut tts = Vec::new(); while self.token != token::Eof { tts.push(self.parse_token_tree()); } Ok(tts) } pub fn parse_tokens(&mut self) -> TokenStream { let mut result = Vec::new(); loop { match self.token.kind { token::Eof | token::CloseDelim(..) => break, _ => result.push(self.parse_token_tree().into()), } } TokenStream::new(result) } /// Evaluates the closure with restrictions in place. /// /// Afters the closure is evaluated, restrictions are reset. fn with_res(&mut self, res: Restrictions, f: impl FnOnce(&mut Self) -> T) -> T { let old = self.restrictions; self.restrictions = res; let res = f(self); self.restrictions = old; res } /// Parses the parameter list of a function, including the `(` and `)` delimiters. fn parse_fn_params(&mut self, mut cfg: ParamCfg) -> PResult<'a, Vec> { let sp = self.token.span; let is_trait_item = cfg.is_self_allowed; let mut c_variadic = false; // Parse the arguments, starting out with `self` being possibly allowed... let (params, _) = self.parse_paren_comma_seq(|p| { let param = p.parse_param_general(&cfg, is_trait_item); // ...now that we've parsed the first argument, `self` is no longer allowed. cfg.is_self_allowed = false; match param { Ok(param) => Ok( if let TyKind::CVarArgs = param.ty.kind { c_variadic = true; if p.token != token::CloseDelim(token::Paren) { p.span_err( p.token.span, "`...` must be the last argument of a C-variadic function", ); // FIXME(eddyb) this should probably still push `CVarArgs`. // Maybe AST validation/HIR lowering should emit the above error? None } else { Some(param) } } else { Some(param) } ), Err(mut e) => { e.emit(); let lo = p.prev_span; // Skip every token until next possible arg or end. p.eat_to_tokens(&[&token::Comma, &token::CloseDelim(token::Paren)]); // Create a placeholder argument for proper arg count (issue #34264). let span = lo.to(p.prev_span); Ok(Some(dummy_arg(Ident::new(kw::Invalid, span)))) } } })?; let mut params: Vec<_> = params.into_iter().filter_map(|x| x).collect(); // Replace duplicated recovered params with `_` pattern to avoid unecessary errors. self.deduplicate_recovered_params_names(&mut params); if c_variadic && params.len() <= 1 { self.span_err( sp, "C-variadic function must be declared with at least one named argument", ); } Ok(params) } /// Skips unexpected attributes and doc comments in this position and emits an appropriate /// error. /// This version of parse param doesn't necessarily require identifier names. fn parse_param_general(&mut self, cfg: &ParamCfg, is_trait_item: bool) -> PResult<'a, Param> { let lo = self.token.span; let attrs = self.parse_outer_attributes()?; // Possibly parse `self`. Recover if we parsed it and it wasn't allowed here. if let Some(mut param) = self.parse_self_param()? { param.attrs = attrs.into(); return if cfg.is_self_allowed { Ok(param) } else { self.recover_bad_self_param(param, is_trait_item) }; } let is_name_required = match self.token.kind { token::DotDotDot => false, _ => (cfg.is_name_required)(&self.token), }; let (pat, ty) = if is_name_required || self.is_named_param() { debug!("parse_param_general parse_pat (is_name_required:{})", is_name_required); let pat = self.parse_fn_param_pat()?; if let Err(mut err) = self.expect(&token::Colon) { return if let Some(ident) = self.parameter_without_type( &mut err, pat, is_name_required, cfg.is_self_allowed, is_trait_item, ) { err.emit(); Ok(dummy_arg(ident)) } else { Err(err) }; } self.eat_incorrect_doc_comment_for_param_type(); (pat, self.parse_ty_common(true, true, cfg.allow_c_variadic)?) } else { debug!("parse_param_general ident_to_pat"); let parser_snapshot_before_ty = self.clone(); self.eat_incorrect_doc_comment_for_param_type(); let mut ty = self.parse_ty_common(true, true, cfg.allow_c_variadic); if ty.is_ok() && self.token != token::Comma && self.token != token::CloseDelim(token::Paren) { // This wasn't actually a type, but a pattern looking like a type, // so we are going to rollback and re-parse for recovery. ty = self.unexpected(); } match ty { Ok(ty) => { let ident = Ident::new(kw::Invalid, self.prev_span); let bm = BindingMode::ByValue(Mutability::Immutable); let pat = self.mk_pat_ident(ty.span, bm, ident); (pat, ty) } // If this is a C-variadic argument and we hit an error, return the error. Err(err) if self.token == token::DotDotDot => return Err(err), // Recover from attempting to parse the argument as a type without pattern. Err(mut err) => { err.cancel(); mem::replace(self, parser_snapshot_before_ty); self.recover_arg_parse()? } } }; let span = lo.to(self.token.span); Ok(Param { attrs: attrs.into(), id: ast::DUMMY_NODE_ID, is_placeholder: false, pat, span, ty, }) } /// Returns the parsed optional self parameter and whether a self shortcut was used. /// /// See `parse_self_param_with_attrs` to collect attributes. fn parse_self_param(&mut self) -> PResult<'a, Option> { // Extract an identifier *after* having confirmed that the token is one. let expect_self_ident = |this: &mut Self| { match this.token.kind { // Preserve hygienic context. token::Ident(name, _) => { let span = this.token.span; this.bump(); Ident::new(name, span) } _ => unreachable!(), } }; // Is `self` `n` tokens ahead? let is_isolated_self = |this: &Self, n| { this.is_keyword_ahead(n, &[kw::SelfLower]) && this.look_ahead(n + 1, |t| t != &token::ModSep) }; // Is `mut self` `n` tokens ahead? let is_isolated_mut_self = |this: &Self, n| { this.is_keyword_ahead(n, &[kw::Mut]) && is_isolated_self(this, n + 1) }; // Parse `self` or `self: TYPE`. We already know the current token is `self`. let parse_self_possibly_typed = |this: &mut Self, m| { let eself_ident = expect_self_ident(this); let eself_hi = this.prev_span; let eself = if this.eat(&token::Colon) { SelfKind::Explicit(this.parse_ty()?, m) } else { SelfKind::Value(m) }; Ok((eself, eself_ident, eself_hi)) }; // Recover for the grammar `*self`, `*const self`, and `*mut self`. let recover_self_ptr = |this: &mut Self| { let msg = "cannot pass `self` by raw pointer"; let span = this.token.span; this.struct_span_err(span, msg) .span_label(span, msg) .emit(); Ok((SelfKind::Value(Mutability::Immutable), expect_self_ident(this), this.prev_span)) }; // Parse optional `self` parameter of a method. // Only a limited set of initial token sequences is considered `self` parameters; anything // else is parsed as a normal function parameter list, so some lookahead is required. let eself_lo = self.token.span; let (eself, eself_ident, eself_hi) = match self.token.kind { token::BinOp(token::And) => { let eself = if is_isolated_self(self, 1) { // `&self` self.bump(); SelfKind::Region(None, Mutability::Immutable) } else if is_isolated_mut_self(self, 1) { // `&mut self` self.bump(); self.bump(); SelfKind::Region(None, Mutability::Mutable) } else if self.look_ahead(1, |t| t.is_lifetime()) && is_isolated_self(self, 2) { // `&'lt self` self.bump(); let lt = self.expect_lifetime(); SelfKind::Region(Some(lt), Mutability::Immutable) } else if self.look_ahead(1, |t| t.is_lifetime()) && is_isolated_mut_self(self, 2) { // `&'lt mut self` self.bump(); let lt = self.expect_lifetime(); self.bump(); SelfKind::Region(Some(lt), Mutability::Mutable) } else { // `¬_self` return Ok(None); }; (eself, expect_self_ident(self), self.prev_span) } // `*self` token::BinOp(token::Star) if is_isolated_self(self, 1) => { self.bump(); recover_self_ptr(self)? } // `*mut self` and `*const self` token::BinOp(token::Star) if self.look_ahead(1, |t| t.is_mutability()) && is_isolated_self(self, 2) => { self.bump(); self.bump(); recover_self_ptr(self)? } // `self` and `self: TYPE` token::Ident(..) if is_isolated_self(self, 0) => { parse_self_possibly_typed(self, Mutability::Immutable)? } // `mut self` and `mut self: TYPE` token::Ident(..) if is_isolated_mut_self(self, 0) => { self.bump(); parse_self_possibly_typed(self, Mutability::Mutable)? } _ => return Ok(None), }; let eself = source_map::respan(eself_lo.to(eself_hi), eself); Ok(Some(Param::from_self(ThinVec::default(), eself, eself_ident))) } fn is_named_param(&self) -> bool { let offset = match self.token.kind { token::Interpolated(ref nt) => match **nt { token::NtPat(..) => return self.look_ahead(1, |t| t == &token::Colon), _ => 0, } token::BinOp(token::And) | token::AndAnd => 1, _ if self.token.is_keyword(kw::Mut) => 1, _ => 0, }; self.look_ahead(offset, |t| t.is_ident()) && self.look_ahead(offset + 1, |t| t == &token::Colon) } fn is_crate_vis(&self) -> bool { self.token.is_keyword(kw::Crate) && self.look_ahead(1, |t| t != &token::ModSep) } /// Parses `pub`, `pub(crate)` and `pub(in path)` plus shortcuts `crate` for `pub(crate)`, /// `pub(self)` for `pub(in self)` and `pub(super)` for `pub(in super)`. /// If the following element can't be a tuple (i.e., it's a function definition), then /// it's not a tuple struct field), and the contents within the parentheses isn't valid, /// so emit a proper diagnostic. pub fn parse_visibility(&mut self, can_take_tuple: bool) -> PResult<'a, Visibility> { maybe_whole!(self, NtVis, |x| x); self.expected_tokens.push(TokenType::Keyword(kw::Crate)); if self.is_crate_vis() { self.bump(); // `crate` return Ok(respan(self.prev_span, VisibilityKind::Crate(CrateSugar::JustCrate))); } if !self.eat_keyword(kw::Pub) { // We need a span for our `Spanned`, but there's inherently no // keyword to grab a span from for inherited visibility; an empty span at the // beginning of the current token would seem to be the "Schelling span". return Ok(respan(self.token.span.shrink_to_lo(), VisibilityKind::Inherited)) } let lo = self.prev_span; if self.check(&token::OpenDelim(token::Paren)) { // We don't `self.bump()` the `(` yet because this might be a struct definition where // `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`. // Because of this, we only `bump` the `(` if we're assured it is appropriate to do so // by the following tokens. if self.is_keyword_ahead(1, &[kw::Crate]) && self.look_ahead(2, |t| t != &token::ModSep) // account for `pub(crate::foo)` { // Parse `pub(crate)`. self.bump(); // `(` self.bump(); // `crate` self.expect(&token::CloseDelim(token::Paren))?; // `)` let vis = VisibilityKind::Crate(CrateSugar::PubCrate); return Ok(respan(lo.to(self.prev_span), vis)); } else if self.is_keyword_ahead(1, &[kw::In]) { // Parse `pub(in path)`. self.bump(); // `(` self.bump(); // `in` let path = self.parse_path(PathStyle::Mod)?; // `path` self.expect(&token::CloseDelim(token::Paren))?; // `)` let vis = VisibilityKind::Restricted { path: P(path), id: ast::DUMMY_NODE_ID, }; return Ok(respan(lo.to(self.prev_span), vis)); } else if self.look_ahead(2, |t| t == &token::CloseDelim(token::Paren)) && self.is_keyword_ahead(1, &[kw::Super, kw::SelfLower]) { // Parse `pub(self)` or `pub(super)`. self.bump(); // `(` let path = self.parse_path(PathStyle::Mod)?; // `super`/`self` self.expect(&token::CloseDelim(token::Paren))?; // `)` let vis = VisibilityKind::Restricted { path: P(path), id: ast::DUMMY_NODE_ID, }; return Ok(respan(lo.to(self.prev_span), vis)); } else if !can_take_tuple { // Provide this diagnostic if this is not a tuple struct. self.recover_incorrect_vis_restriction()?; // Emit diagnostic, but continue with public visibility. } } Ok(respan(lo, VisibilityKind::Public)) } /// Recovery for e.g. `pub(something) fn ...` or `struct X { pub(something) y: Z }` fn recover_incorrect_vis_restriction(&mut self) -> PResult<'a, ()> { self.bump(); // `(` let path = self.parse_path(PathStyle::Mod)?; self.expect(&token::CloseDelim(token::Paren))?; // `)` let msg = "incorrect visibility restriction"; let suggestion = r##"some possible visibility restrictions are: `pub(crate)`: visible only on the current crate `pub(super)`: visible only in the current module's parent `pub(in path::to::module)`: visible only on the specified path"##; struct_span_err!(self.sess.span_diagnostic, path.span, E0704, "{}", msg) .help(suggestion) .span_suggestion( path.span, &format!("make this visible only to module `{}` with `in`", path), format!("in {}", path), Applicability::MachineApplicable, ) .emit(); Ok(()) } /// Parses `extern` followed by an optional ABI string, or nothing. fn parse_extern_abi(&mut self) -> PResult<'a, Abi> { if self.eat_keyword(kw::Extern) { Ok(self.parse_opt_abi()?.unwrap_or(Abi::C)) } else { Ok(Abi::Rust) } } /// Parses a string as an ABI spec on an extern type or module. Consumes /// the `extern` keyword, if one is found. fn parse_opt_abi(&mut self) -> PResult<'a, Option> { match self.token.kind { token::Literal(token::Lit { kind: token::Str, symbol, suffix }) | token::Literal(token::Lit { kind: token::StrRaw(..), symbol, suffix }) => { self.expect_no_suffix(self.token.span, "an ABI spec", suffix); self.bump(); match abi::lookup(&symbol.as_str()) { Some(abi) => Ok(Some(abi)), None => { self.error_on_invalid_abi(symbol); Ok(None) } } } _ => Ok(None), } } /// Emit an error where `symbol` is an invalid ABI. fn error_on_invalid_abi(&self, symbol: Symbol) { let prev_span = self.prev_span; struct_span_err!( self.sess.span_diagnostic, prev_span, E0703, "invalid ABI: found `{}`", symbol ) .span_label(prev_span, "invalid ABI") .help(&format!("valid ABIs: {}", abi::all_names().join(", "))) .emit(); } /// We are parsing `async fn`. If we are on Rust 2015, emit an error. fn ban_async_in_2015(&self, async_span: Span) { if async_span.rust_2015() { self.diagnostic() .struct_span_err_with_code( async_span, "`async fn` is not permitted in the 2015 edition", DiagnosticId::Error("E0670".into()) ) .emit(); } } fn collect_tokens( &mut self, f: impl FnOnce(&mut Self) -> PResult<'a, R>, ) -> PResult<'a, (R, TokenStream)> { // Record all tokens we parse when parsing this item. let mut tokens = Vec::new(); let prev_collecting = match self.token_cursor.frame.last_token { LastToken::Collecting(ref mut list) => { Some(mem::take(list)) } LastToken::Was(ref mut last) => { tokens.extend(last.take()); None } }; self.token_cursor.frame.last_token = LastToken::Collecting(tokens); let prev = self.token_cursor.stack.len(); let ret = f(self); let last_token = if self.token_cursor.stack.len() == prev { &mut self.token_cursor.frame.last_token } else if self.token_cursor.stack.get(prev).is_none() { // This can happen due to a bad interaction of two unrelated recovery mechanisms with // mismatched delimiters *and* recovery lookahead on the likely typo `pub ident(` // (#62881). return Ok((ret?, TokenStream::new(vec![]))); } else { &mut self.token_cursor.stack[prev].last_token }; // Pull out the tokens that we've collected from the call to `f` above. let mut collected_tokens = match *last_token { LastToken::Collecting(ref mut v) => mem::take(v), LastToken::Was(ref was) => { let msg = format!("our vector went away? - found Was({:?})", was); debug!("collect_tokens: {}", msg); self.sess.span_diagnostic.delay_span_bug(self.token.span, &msg); // This can happen due to a bad interaction of two unrelated recovery mechanisms // with mismatched delimiters *and* recovery lookahead on the likely typo // `pub ident(` (#62895, different but similar to the case above). return Ok((ret?, TokenStream::new(vec![]))); } }; // If we're not at EOF our current token wasn't actually consumed by // `f`, but it'll still be in our list that we pulled out. In that case // put it back. let extra_token = if self.token != token::Eof { collected_tokens.pop() } else { None }; // If we were previously collecting tokens, then this was a recursive // call. In that case we need to record all the tokens we collected in // our parent list as well. To do that we push a clone of our stream // onto the previous list. match prev_collecting { Some(mut list) => { list.extend(collected_tokens.iter().cloned()); list.extend(extra_token); *last_token = LastToken::Collecting(list); } None => { *last_token = LastToken::Was(extra_token); } } Ok((ret?, TokenStream::new(collected_tokens))) } /// `::{` or `::*` fn is_import_coupler(&mut self) -> bool { self.check(&token::ModSep) && self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace) || *t == token::BinOp(token::Star)) } pub fn parse_optional_str(&mut self) -> Option<(Symbol, ast::StrStyle, Option)> { let ret = match self.token.kind { token::Literal(token::Lit { kind: token::Str, symbol, suffix }) => (symbol, ast::StrStyle::Cooked, suffix), token::Literal(token::Lit { kind: token::StrRaw(n), symbol, suffix }) => (symbol, ast::StrStyle::Raw(n), suffix), _ => return None }; self.bump(); Some(ret) } pub fn parse_str(&mut self) -> PResult<'a, (Symbol, StrStyle)> { match self.parse_optional_str() { Some((s, style, suf)) => { let sp = self.prev_span; self.expect_no_suffix(sp, "a string literal", suf); Ok((s, style)) } _ => { let msg = "expected string literal"; let mut err = self.fatal(msg); err.span_label(self.token.span, msg); Err(err) } } } fn report_invalid_macro_expansion_item(&self) { self.struct_span_err( self.prev_span, "macros that expand to items must be delimited with braces or followed by a semicolon", ).multipart_suggestion( "change the delimiters to curly braces", vec![ (self.prev_span.with_hi(self.prev_span.lo() + BytePos(1)), String::from(" {")), (self.prev_span.with_lo(self.prev_span.hi() - BytePos(1)), '}'.to_string()), ], Applicability::MaybeIncorrect, ).span_suggestion( self.sess.source_map.next_point(self.prev_span), "add a semicolon", ';'.to_string(), Applicability::MaybeIncorrect, ).emit(); } } pub fn emit_unclosed_delims(unclosed_delims: &mut Vec, handler: &errors::Handler) { for unmatched in unclosed_delims.iter() { let mut err = handler.struct_span_err(unmatched.found_span, &format!( "incorrect close delimiter: `{}`", pprust::token_kind_to_string(&token::CloseDelim(unmatched.found_delim)), )); err.span_label(unmatched.found_span, "incorrect close delimiter"); if let Some(sp) = unmatched.candidate_span { err.span_label(sp, "close delimiter possibly meant for this"); } if let Some(sp) = unmatched.unclosed_span { err.span_label(sp, "un-closed delimiter"); } err.emit(); } unclosed_delims.clear(); }