// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use abi::Abi; use ast::{self, Ident, Generics, Expr, BlockCheckMode, UnOp, PatKind}; use attr; use syntax_pos::{Span, DUMMY_SP}; use codemap::{dummy_spanned, respan, Spanned}; use ext::base::ExtCtxt; use ptr::P; use symbol::{Symbol, keywords}; // Transitional reexports so qquote can find the paths it is looking for mod syntax { pub use ext; pub use parse; } pub trait AstBuilder { // paths fn path(&self, span: Span, strs: Vec ) -> ast::Path; fn path_ident(&self, span: Span, id: ast::Ident) -> ast::Path; fn path_global(&self, span: Span, strs: Vec ) -> ast::Path; fn path_all(&self, sp: Span, global: bool, idents: Vec , lifetimes: Vec, types: Vec>, bindings: Vec ) -> ast::Path; fn qpath(&self, self_type: P, trait_path: ast::Path, ident: ast::Ident) -> (ast::QSelf, ast::Path); fn qpath_all(&self, self_type: P, trait_path: ast::Path, ident: ast::Ident, lifetimes: Vec, types: Vec>, bindings: Vec) -> (ast::QSelf, ast::Path); // types fn ty_mt(&self, ty: P, mutbl: ast::Mutability) -> ast::MutTy; fn ty(&self, span: Span, ty: ast::TyKind) -> P; fn ty_path(&self, ast::Path) -> P; fn ty_sum(&self, ast::Path, ast::TyParamBounds) -> P; fn ty_ident(&self, span: Span, idents: ast::Ident) -> P; fn ty_rptr(&self, span: Span, ty: P, lifetime: Option, mutbl: ast::Mutability) -> P; fn ty_ptr(&self, span: Span, ty: P, mutbl: ast::Mutability) -> P; fn ty_option(&self, ty: P) -> P; fn ty_infer(&self, sp: Span) -> P; fn ty_vars(&self, ty_params: &P<[ast::TyParam]>) -> Vec> ; fn ty_vars_global(&self, ty_params: &P<[ast::TyParam]>) -> Vec> ; fn typaram(&self, span: Span, id: ast::Ident, attrs: Vec, bounds: ast::TyParamBounds, default: Option>) -> ast::TyParam; fn trait_ref(&self, path: ast::Path) -> ast::TraitRef; fn poly_trait_ref(&self, span: Span, path: ast::Path) -> ast::PolyTraitRef; fn typarambound(&self, path: ast::Path) -> ast::TyParamBound; fn lifetime(&self, span: Span, ident: ast::Name) -> ast::Lifetime; fn lifetime_def(&self, span: Span, name: ast::Name, attrs: Vec, bounds: Vec) -> ast::LifetimeDef; // statements fn stmt_expr(&self, expr: P) -> ast::Stmt; fn stmt_semi(&self, expr: P) -> ast::Stmt; fn stmt_let(&self, sp: Span, mutbl: bool, ident: ast::Ident, ex: P) -> ast::Stmt; fn stmt_let_typed(&self, sp: Span, mutbl: bool, ident: ast::Ident, typ: P, ex: P) -> ast::Stmt; fn stmt_let_type_only(&self, span: Span, ty: P) -> ast::Stmt; fn stmt_item(&self, sp: Span, item: P) -> ast::Stmt; // blocks fn block(&self, span: Span, stmts: Vec) -> P; fn block_expr(&self, expr: P) -> P; // expressions fn expr(&self, span: Span, node: ast::ExprKind) -> P; fn expr_path(&self, path: ast::Path) -> P; fn expr_qpath(&self, span: Span, qself: ast::QSelf, path: ast::Path) -> P; fn expr_ident(&self, span: Span, id: ast::Ident) -> P; fn expr_self(&self, span: Span) -> P; fn expr_binary(&self, sp: Span, op: ast::BinOpKind, lhs: P, rhs: P) -> P; fn expr_deref(&self, sp: Span, e: P) -> P; fn expr_unary(&self, sp: Span, op: ast::UnOp, e: P) -> P; fn expr_addr_of(&self, sp: Span, e: P) -> P; fn expr_mut_addr_of(&self, sp: Span, e: P) -> P; fn expr_field_access(&self, span: Span, expr: P, ident: ast::Ident) -> P; fn expr_tup_field_access(&self, sp: Span, expr: P, idx: usize) -> P; fn expr_call(&self, span: Span, expr: P, args: Vec>) -> P; fn expr_call_ident(&self, span: Span, id: ast::Ident, args: Vec>) -> P; fn expr_call_global(&self, sp: Span, fn_path: Vec, args: Vec> ) -> P; fn expr_method_call(&self, span: Span, expr: P, ident: ast::Ident, args: Vec> ) -> P; fn expr_block(&self, b: P) -> P; fn expr_cast(&self, sp: Span, expr: P, ty: P) -> P; fn field_imm(&self, span: Span, name: Ident, e: P) -> ast::Field; fn expr_struct(&self, span: Span, path: ast::Path, fields: Vec) -> P; fn expr_struct_ident(&self, span: Span, id: ast::Ident, fields: Vec) -> P; fn expr_lit(&self, sp: Span, lit: ast::LitKind) -> P; fn expr_usize(&self, span: Span, i: usize) -> P; fn expr_isize(&self, sp: Span, i: isize) -> P; fn expr_u8(&self, sp: Span, u: u8) -> P; fn expr_u32(&self, sp: Span, u: u32) -> P; fn expr_bool(&self, sp: Span, value: bool) -> P; fn expr_vec(&self, sp: Span, exprs: Vec>) -> P; fn expr_vec_ng(&self, sp: Span) -> P; fn expr_vec_slice(&self, sp: Span, exprs: Vec>) -> P; fn expr_str(&self, sp: Span, s: Symbol) -> P; fn expr_some(&self, sp: Span, expr: P) -> P; fn expr_none(&self, sp: Span) -> P; fn expr_break(&self, sp: Span) -> P; fn expr_tuple(&self, sp: Span, exprs: Vec>) -> P; fn expr_fail(&self, span: Span, msg: Symbol) -> P; fn expr_unreachable(&self, span: Span) -> P; fn expr_ok(&self, span: Span, expr: P) -> P; fn expr_err(&self, span: Span, expr: P) -> P; fn expr_try(&self, span: Span, head: P) -> P; fn pat(&self, span: Span, pat: PatKind) -> P; fn pat_wild(&self, span: Span) -> P; fn pat_lit(&self, span: Span, expr: P) -> P; fn pat_ident(&self, span: Span, ident: ast::Ident) -> P; fn pat_ident_binding_mode(&self, span: Span, ident: ast::Ident, bm: ast::BindingMode) -> P; fn pat_path(&self, span: Span, path: ast::Path) -> P; fn pat_tuple_struct(&self, span: Span, path: ast::Path, subpats: Vec>) -> P; fn pat_struct(&self, span: Span, path: ast::Path, field_pats: Vec>) -> P; fn pat_tuple(&self, span: Span, pats: Vec>) -> P; fn pat_some(&self, span: Span, pat: P) -> P; fn pat_none(&self, span: Span) -> P; fn pat_ok(&self, span: Span, pat: P) -> P; fn pat_err(&self, span: Span, pat: P) -> P; fn arm(&self, span: Span, pats: Vec>, expr: P) -> ast::Arm; fn arm_unreachable(&self, span: Span) -> ast::Arm; fn expr_match(&self, span: Span, arg: P, arms: Vec ) -> P; fn expr_if(&self, span: Span, cond: P, then: P, els: Option>) -> P; fn expr_loop(&self, span: Span, block: P) -> P; fn lambda_fn_decl(&self, span: Span, fn_decl: P, body: P, fn_decl_span: Span) -> P; fn lambda(&self, span: Span, ids: Vec, body: P) -> P; fn lambda0(&self, span: Span, body: P) -> P; fn lambda1(&self, span: Span, body: P, ident: ast::Ident) -> P; fn lambda_stmts(&self, span: Span, ids: Vec, blk: Vec) -> P; fn lambda_stmts_0(&self, span: Span, stmts: Vec) -> P; fn lambda_stmts_1(&self, span: Span, stmts: Vec, ident: ast::Ident) -> P; // items fn item(&self, span: Span, name: Ident, attrs: Vec , node: ast::ItemKind) -> P; fn arg(&self, span: Span, name: Ident, ty: P) -> ast::Arg; // FIXME unused self fn fn_decl(&self, inputs: Vec , output: P) -> P; fn item_fn_poly(&self, span: Span, name: Ident, inputs: Vec , output: P, generics: Generics, body: P) -> P; fn item_fn(&self, span: Span, name: Ident, inputs: Vec , output: P, body: P) -> P; fn variant(&self, span: Span, name: Ident, tys: Vec> ) -> ast::Variant; fn item_enum_poly(&self, span: Span, name: Ident, enum_definition: ast::EnumDef, generics: Generics) -> P; fn item_enum(&self, span: Span, name: Ident, enum_def: ast::EnumDef) -> P; fn item_struct_poly(&self, span: Span, name: Ident, struct_def: ast::VariantData, generics: Generics) -> P; fn item_struct(&self, span: Span, name: Ident, struct_def: ast::VariantData) -> P; fn item_mod(&self, span: Span, inner_span: Span, name: Ident, attrs: Vec, items: Vec>) -> P; fn item_static(&self, span: Span, name: Ident, ty: P, mutbl: ast::Mutability, expr: P) -> P; fn item_const(&self, span: Span, name: Ident, ty: P, expr: P) -> P; fn item_ty_poly(&self, span: Span, name: Ident, ty: P, generics: Generics) -> P; fn item_ty(&self, span: Span, name: Ident, ty: P) -> P; fn attribute(&self, sp: Span, mi: ast::MetaItem) -> ast::Attribute; fn meta_word(&self, sp: Span, w: ast::Name) -> ast::MetaItem; fn meta_list_item_word(&self, sp: Span, w: ast::Name) -> ast::NestedMetaItem; fn meta_list(&self, sp: Span, name: ast::Name, mis: Vec ) -> ast::MetaItem; fn meta_name_value(&self, sp: Span, name: ast::Name, value: ast::LitKind) -> ast::MetaItem; fn item_use(&self, sp: Span, vis: ast::Visibility, vp: P) -> P; fn item_use_simple(&self, sp: Span, vis: ast::Visibility, path: ast::Path) -> P; fn item_use_simple_(&self, sp: Span, vis: ast::Visibility, ident: ast::Ident, path: ast::Path) -> P; fn item_use_list(&self, sp: Span, vis: ast::Visibility, path: Vec, imports: &[ast::Ident]) -> P; fn item_use_glob(&self, sp: Span, vis: ast::Visibility, path: Vec) -> P; } impl<'a> AstBuilder for ExtCtxt<'a> { fn path(&self, span: Span, strs: Vec ) -> ast::Path { self.path_all(span, false, strs, Vec::new(), Vec::new(), Vec::new()) } fn path_ident(&self, span: Span, id: ast::Ident) -> ast::Path { self.path(span, vec![id]) } fn path_global(&self, span: Span, strs: Vec ) -> ast::Path { self.path_all(span, true, strs, Vec::new(), Vec::new(), Vec::new()) } fn path_all(&self, sp: Span, global: bool, mut idents: Vec , lifetimes: Vec, types: Vec>, bindings: Vec ) -> ast::Path { let last_identifier = idents.pop().unwrap(); let mut segments: Vec = idents.into_iter().map(Into::into).collect(); let parameters = if lifetimes.is_empty() && types.is_empty() && bindings.is_empty() { None } else { Some(P(ast::PathParameters::AngleBracketed(ast::AngleBracketedParameterData { lifetimes: lifetimes, types: P::from_vec(types), bindings: P::from_vec(bindings), }))) }; segments.push(ast::PathSegment { identifier: last_identifier, parameters: parameters }); ast::Path { span: sp, global: global, segments: segments, } } /// Constructs a qualified path. /// /// Constructs a path like `::ident`. fn qpath(&self, self_type: P, trait_path: ast::Path, ident: ast::Ident) -> (ast::QSelf, ast::Path) { self.qpath_all(self_type, trait_path, ident, vec![], vec![], vec![]) } /// Constructs a qualified path. /// /// Constructs a path like `::ident<'a, T, A=Bar>`. fn qpath_all(&self, self_type: P, trait_path: ast::Path, ident: ast::Ident, lifetimes: Vec, types: Vec>, bindings: Vec) -> (ast::QSelf, ast::Path) { let mut path = trait_path; let parameters = ast::AngleBracketedParameterData { lifetimes: lifetimes, types: P::from_vec(types), bindings: P::from_vec(bindings), }; path.segments.push(ast::PathSegment { identifier: ident, parameters: Some(P(ast::PathParameters::AngleBracketed(parameters))), }); (ast::QSelf { ty: self_type, position: path.segments.len() - 1 }, path) } fn ty_mt(&self, ty: P, mutbl: ast::Mutability) -> ast::MutTy { ast::MutTy { ty: ty, mutbl: mutbl } } fn ty(&self, span: Span, ty: ast::TyKind) -> P { P(ast::Ty { id: ast::DUMMY_NODE_ID, span: span, node: ty }) } fn ty_path(&self, path: ast::Path) -> P { self.ty(path.span, ast::TyKind::Path(None, path)) } fn ty_sum(&self, path: ast::Path, bounds: ast::TyParamBounds) -> P { self.ty(path.span, ast::TyKind::ObjectSum(self.ty_path(path), bounds)) } // Might need to take bounds as an argument in the future, if you ever want // to generate a bounded existential trait type. fn ty_ident(&self, span: Span, ident: ast::Ident) -> P { self.ty_path(self.path_ident(span, ident)) } fn ty_rptr(&self, span: Span, ty: P, lifetime: Option, mutbl: ast::Mutability) -> P { self.ty(span, ast::TyKind::Rptr(lifetime, self.ty_mt(ty, mutbl))) } fn ty_ptr(&self, span: Span, ty: P, mutbl: ast::Mutability) -> P { self.ty(span, ast::TyKind::Ptr(self.ty_mt(ty, mutbl))) } fn ty_option(&self, ty: P) -> P { self.ty_path( self.path_all(DUMMY_SP, true, self.std_path(&["option", "Option"]), Vec::new(), vec![ ty ], Vec::new())) } fn ty_infer(&self, span: Span) -> P { self.ty(span, ast::TyKind::Infer) } fn typaram(&self, span: Span, id: ast::Ident, attrs: Vec, bounds: ast::TyParamBounds, default: Option>) -> ast::TyParam { ast::TyParam { ident: id, id: ast::DUMMY_NODE_ID, attrs: attrs.into(), bounds: bounds, default: default, span: span } } // these are strange, and probably shouldn't be used outside of // pipes. Specifically, the global version possible generates // incorrect code. fn ty_vars(&self, ty_params: &P<[ast::TyParam]>) -> Vec> { ty_params.iter().map(|p| self.ty_ident(DUMMY_SP, p.ident)).collect() } fn ty_vars_global(&self, ty_params: &P<[ast::TyParam]>) -> Vec> { ty_params .iter() .map(|p| self.ty_path(self.path_global(DUMMY_SP, vec![p.ident]))) .collect() } fn trait_ref(&self, path: ast::Path) -> ast::TraitRef { ast::TraitRef { path: path, ref_id: ast::DUMMY_NODE_ID, } } fn poly_trait_ref(&self, span: Span, path: ast::Path) -> ast::PolyTraitRef { ast::PolyTraitRef { bound_lifetimes: Vec::new(), trait_ref: self.trait_ref(path), span: span, } } fn typarambound(&self, path: ast::Path) -> ast::TyParamBound { ast::TraitTyParamBound(self.poly_trait_ref(path.span, path), ast::TraitBoundModifier::None) } fn lifetime(&self, span: Span, name: ast::Name) -> ast::Lifetime { ast::Lifetime { id: ast::DUMMY_NODE_ID, span: span, name: name } } fn lifetime_def(&self, span: Span, name: ast::Name, attrs: Vec, bounds: Vec) -> ast::LifetimeDef { ast::LifetimeDef { attrs: attrs.into(), lifetime: self.lifetime(span, name), bounds: bounds } } fn stmt_expr(&self, expr: P) -> ast::Stmt { ast::Stmt { id: ast::DUMMY_NODE_ID, span: expr.span, node: ast::StmtKind::Expr(expr), } } fn stmt_semi(&self, expr: P) -> ast::Stmt { ast::Stmt { id: ast::DUMMY_NODE_ID, span: expr.span, node: ast::StmtKind::Semi(expr), } } fn stmt_let(&self, sp: Span, mutbl: bool, ident: ast::Ident, ex: P) -> ast::Stmt { let pat = if mutbl { let binding_mode = ast::BindingMode::ByValue(ast::Mutability::Mutable); self.pat_ident_binding_mode(sp, ident, binding_mode) } else { self.pat_ident(sp, ident) }; let local = P(ast::Local { pat: pat, ty: None, init: Some(ex), id: ast::DUMMY_NODE_ID, span: sp, attrs: ast::ThinVec::new(), }); ast::Stmt { id: ast::DUMMY_NODE_ID, node: ast::StmtKind::Local(local), span: sp, } } fn stmt_let_typed(&self, sp: Span, mutbl: bool, ident: ast::Ident, typ: P, ex: P) -> ast::Stmt { let pat = if mutbl { let binding_mode = ast::BindingMode::ByValue(ast::Mutability::Mutable); self.pat_ident_binding_mode(sp, ident, binding_mode) } else { self.pat_ident(sp, ident) }; let local = P(ast::Local { pat: pat, ty: Some(typ), init: Some(ex), id: ast::DUMMY_NODE_ID, span: sp, attrs: ast::ThinVec::new(), }); ast::Stmt { id: ast::DUMMY_NODE_ID, node: ast::StmtKind::Local(local), span: sp, } } // Generate `let _: Type;`, usually used for type assertions. fn stmt_let_type_only(&self, span: Span, ty: P) -> ast::Stmt { let local = P(ast::Local { pat: self.pat_wild(span), ty: Some(ty), init: None, id: ast::DUMMY_NODE_ID, span: span, attrs: ast::ThinVec::new(), }); ast::Stmt { id: ast::DUMMY_NODE_ID, node: ast::StmtKind::Local(local), span: span, } } fn stmt_item(&self, sp: Span, item: P) -> ast::Stmt { ast::Stmt { id: ast::DUMMY_NODE_ID, node: ast::StmtKind::Item(item), span: sp, } } fn block_expr(&self, expr: P) -> P { self.block(expr.span, vec![ast::Stmt { id: ast::DUMMY_NODE_ID, span: expr.span, node: ast::StmtKind::Expr(expr), }]) } fn block(&self, span: Span, stmts: Vec) -> P { P(ast::Block { stmts: stmts, id: ast::DUMMY_NODE_ID, rules: BlockCheckMode::Default, span: span, }) } fn expr(&self, span: Span, node: ast::ExprKind) -> P { P(ast::Expr { id: ast::DUMMY_NODE_ID, node: node, span: span, attrs: ast::ThinVec::new(), }) } fn expr_path(&self, path: ast::Path) -> P { self.expr(path.span, ast::ExprKind::Path(None, path)) } /// Constructs a QPath expression. fn expr_qpath(&self, span: Span, qself: ast::QSelf, path: ast::Path) -> P { self.expr(span, ast::ExprKind::Path(Some(qself), path)) } fn expr_ident(&self, span: Span, id: ast::Ident) -> P { self.expr_path(self.path_ident(span, id)) } fn expr_self(&self, span: Span) -> P { self.expr_ident(span, keywords::SelfValue.ident()) } fn expr_binary(&self, sp: Span, op: ast::BinOpKind, lhs: P, rhs: P) -> P { self.expr(sp, ast::ExprKind::Binary(Spanned { node: op, span: sp }, lhs, rhs)) } fn expr_deref(&self, sp: Span, e: P) -> P { self.expr_unary(sp, UnOp::Deref, e) } fn expr_unary(&self, sp: Span, op: ast::UnOp, e: P) -> P { self.expr(sp, ast::ExprKind::Unary(op, e)) } fn expr_field_access(&self, sp: Span, expr: P, ident: ast::Ident) -> P { let id = Spanned { node: ident, span: sp }; self.expr(sp, ast::ExprKind::Field(expr, id)) } fn expr_tup_field_access(&self, sp: Span, expr: P, idx: usize) -> P { let id = Spanned { node: idx, span: sp }; self.expr(sp, ast::ExprKind::TupField(expr, id)) } fn expr_addr_of(&self, sp: Span, e: P) -> P { self.expr(sp, ast::ExprKind::AddrOf(ast::Mutability::Immutable, e)) } fn expr_mut_addr_of(&self, sp: Span, e: P) -> P { self.expr(sp, ast::ExprKind::AddrOf(ast::Mutability::Mutable, e)) } fn expr_call(&self, span: Span, expr: P, args: Vec>) -> P { self.expr(span, ast::ExprKind::Call(expr, args)) } fn expr_call_ident(&self, span: Span, id: ast::Ident, args: Vec>) -> P { self.expr(span, ast::ExprKind::Call(self.expr_ident(span, id), args)) } fn expr_call_global(&self, sp: Span, fn_path: Vec , args: Vec> ) -> P { let pathexpr = self.expr_path(self.path_global(sp, fn_path)); self.expr_call(sp, pathexpr, args) } fn expr_method_call(&self, span: Span, expr: P, ident: ast::Ident, mut args: Vec> ) -> P { let id = Spanned { node: ident, span: span }; args.insert(0, expr); self.expr(span, ast::ExprKind::MethodCall(id, Vec::new(), args)) } fn expr_block(&self, b: P) -> P { self.expr(b.span, ast::ExprKind::Block(b)) } fn field_imm(&self, span: Span, name: Ident, e: P) -> ast::Field { ast::Field { ident: respan(span, name), expr: e, span: span, is_shorthand: false } } fn expr_struct(&self, span: Span, path: ast::Path, fields: Vec) -> P { self.expr(span, ast::ExprKind::Struct(path, fields, None)) } fn expr_struct_ident(&self, span: Span, id: ast::Ident, fields: Vec) -> P { self.expr_struct(span, self.path_ident(span, id), fields) } fn expr_lit(&self, sp: Span, lit: ast::LitKind) -> P { self.expr(sp, ast::ExprKind::Lit(P(respan(sp, lit)))) } fn expr_usize(&self, span: Span, i: usize) -> P { self.expr_lit(span, ast::LitKind::Int(i as u64, ast::LitIntType::Unsigned(ast::UintTy::Us))) } fn expr_isize(&self, sp: Span, i: isize) -> P { if i < 0 { let i = (-i) as u64; let lit_ty = ast::LitIntType::Signed(ast::IntTy::Is); let lit = self.expr_lit(sp, ast::LitKind::Int(i, lit_ty)); self.expr_unary(sp, ast::UnOp::Neg, lit) } else { self.expr_lit(sp, ast::LitKind::Int(i as u64, ast::LitIntType::Signed(ast::IntTy::Is))) } } fn expr_u32(&self, sp: Span, u: u32) -> P { self.expr_lit(sp, ast::LitKind::Int(u as u64, ast::LitIntType::Unsigned(ast::UintTy::U32))) } fn expr_u8(&self, sp: Span, u: u8) -> P { self.expr_lit(sp, ast::LitKind::Int(u as u64, ast::LitIntType::Unsigned(ast::UintTy::U8))) } fn expr_bool(&self, sp: Span, value: bool) -> P { self.expr_lit(sp, ast::LitKind::Bool(value)) } fn expr_vec(&self, sp: Span, exprs: Vec>) -> P { self.expr(sp, ast::ExprKind::Vec(exprs)) } fn expr_vec_ng(&self, sp: Span) -> P { self.expr_call_global(sp, self.std_path(&["vec", "Vec", "new"]), Vec::new()) } fn expr_vec_slice(&self, sp: Span, exprs: Vec>) -> P { self.expr_addr_of(sp, self.expr_vec(sp, exprs)) } fn expr_str(&self, sp: Span, s: Symbol) -> P { self.expr_lit(sp, ast::LitKind::Str(s, ast::StrStyle::Cooked)) } fn expr_cast(&self, sp: Span, expr: P, ty: P) -> P { self.expr(sp, ast::ExprKind::Cast(expr, ty)) } fn expr_some(&self, sp: Span, expr: P) -> P { let some = self.std_path(&["option", "Option", "Some"]); self.expr_call_global(sp, some, vec![expr]) } fn expr_none(&self, sp: Span) -> P { let none = self.std_path(&["option", "Option", "None"]); let none = self.path_global(sp, none); self.expr_path(none) } fn expr_break(&self, sp: Span) -> P { self.expr(sp, ast::ExprKind::Break(None, None)) } fn expr_tuple(&self, sp: Span, exprs: Vec>) -> P { self.expr(sp, ast::ExprKind::Tup(exprs)) } fn expr_fail(&self, span: Span, msg: Symbol) -> P { let loc = self.codemap().lookup_char_pos(span.lo); let expr_file = self.expr_str(span, Symbol::intern(&loc.file.name)); let expr_line = self.expr_u32(span, loc.line as u32); let expr_file_line_tuple = self.expr_tuple(span, vec![expr_file, expr_line]); let expr_file_line_ptr = self.expr_addr_of(span, expr_file_line_tuple); self.expr_call_global( span, self.std_path(&["rt", "begin_panic"]), vec![ self.expr_str(span, msg), expr_file_line_ptr]) } fn expr_unreachable(&self, span: Span) -> P { self.expr_fail(span, Symbol::intern("internal error: entered unreachable code")) } fn expr_ok(&self, sp: Span, expr: P) -> P { let ok = self.std_path(&["result", "Result", "Ok"]); self.expr_call_global(sp, ok, vec![expr]) } fn expr_err(&self, sp: Span, expr: P) -> P { let err = self.std_path(&["result", "Result", "Err"]); self.expr_call_global(sp, err, vec![expr]) } fn expr_try(&self, sp: Span, head: P) -> P { let ok = self.std_path(&["result", "Result", "Ok"]); let ok_path = self.path_global(sp, ok); let err = self.std_path(&["result", "Result", "Err"]); let err_path = self.path_global(sp, err); let binding_variable = self.ident_of("__try_var"); let binding_pat = self.pat_ident(sp, binding_variable); let binding_expr = self.expr_ident(sp, binding_variable); // Ok(__try_var) pattern let ok_pat = self.pat_tuple_struct(sp, ok_path, vec![binding_pat.clone()]); // Err(__try_var) (pattern and expression resp.) let err_pat = self.pat_tuple_struct(sp, err_path.clone(), vec![binding_pat]); let err_inner_expr = self.expr_call(sp, self.expr_path(err_path), vec![binding_expr.clone()]); // return Err(__try_var) let err_expr = self.expr(sp, ast::ExprKind::Ret(Some(err_inner_expr))); // Ok(__try_var) => __try_var let ok_arm = self.arm(sp, vec![ok_pat], binding_expr); // Err(__try_var) => return Err(__try_var) let err_arm = self.arm(sp, vec![err_pat], err_expr); // match head { Ok() => ..., Err() => ... } self.expr_match(sp, head, vec![ok_arm, err_arm]) } fn pat(&self, span: Span, pat: PatKind) -> P { P(ast::Pat { id: ast::DUMMY_NODE_ID, node: pat, span: span }) } fn pat_wild(&self, span: Span) -> P { self.pat(span, PatKind::Wild) } fn pat_lit(&self, span: Span, expr: P) -> P { self.pat(span, PatKind::Lit(expr)) } fn pat_ident(&self, span: Span, ident: ast::Ident) -> P { let binding_mode = ast::BindingMode::ByValue(ast::Mutability::Immutable); self.pat_ident_binding_mode(span, ident, binding_mode) } fn pat_ident_binding_mode(&self, span: Span, ident: ast::Ident, bm: ast::BindingMode) -> P { let pat = PatKind::Ident(bm, Spanned{span: span, node: ident}, None); self.pat(span, pat) } fn pat_path(&self, span: Span, path: ast::Path) -> P { self.pat(span, PatKind::Path(None, path)) } fn pat_tuple_struct(&self, span: Span, path: ast::Path, subpats: Vec>) -> P { self.pat(span, PatKind::TupleStruct(path, subpats, None)) } fn pat_struct(&self, span: Span, path: ast::Path, field_pats: Vec>) -> P { self.pat(span, PatKind::Struct(path, field_pats, false)) } fn pat_tuple(&self, span: Span, pats: Vec>) -> P { self.pat(span, PatKind::Tuple(pats, None)) } fn pat_some(&self, span: Span, pat: P) -> P { let some = self.std_path(&["option", "Option", "Some"]); let path = self.path_global(span, some); self.pat_tuple_struct(span, path, vec![pat]) } fn pat_none(&self, span: Span) -> P { let some = self.std_path(&["option", "Option", "None"]); let path = self.path_global(span, some); self.pat_path(span, path) } fn pat_ok(&self, span: Span, pat: P) -> P { let some = self.std_path(&["result", "Result", "Ok"]); let path = self.path_global(span, some); self.pat_tuple_struct(span, path, vec![pat]) } fn pat_err(&self, span: Span, pat: P) -> P { let some = self.std_path(&["result", "Result", "Err"]); let path = self.path_global(span, some); self.pat_tuple_struct(span, path, vec![pat]) } fn arm(&self, _span: Span, pats: Vec>, expr: P) -> ast::Arm { ast::Arm { attrs: vec![], pats: pats, guard: None, body: expr } } fn arm_unreachable(&self, span: Span) -> ast::Arm { self.arm(span, vec![self.pat_wild(span)], self.expr_unreachable(span)) } fn expr_match(&self, span: Span, arg: P, arms: Vec) -> P { self.expr(span, ast::ExprKind::Match(arg, arms)) } fn expr_if(&self, span: Span, cond: P, then: P, els: Option>) -> P { let els = els.map(|x| self.expr_block(self.block_expr(x))); self.expr(span, ast::ExprKind::If(cond, self.block_expr(then), els)) } fn expr_loop(&self, span: Span, block: P) -> P { self.expr(span, ast::ExprKind::Loop(block, None)) } fn lambda_fn_decl(&self, span: Span, fn_decl: P, body: P, fn_decl_span: Span) // span of the `|...|` part -> P { self.expr(span, ast::ExprKind::Closure(ast::CaptureBy::Ref, fn_decl, body, fn_decl_span)) } fn lambda(&self, span: Span, ids: Vec, body: P) -> P { let fn_decl = self.fn_decl( ids.iter().map(|id| self.arg(span, *id, self.ty_infer(span))).collect(), self.ty_infer(span)); // FIXME -- We are using `span` as the span of the `|...|` // part of the lambda, but it probably (maybe?) corresponds to // the entire lambda body. Probably we should extend the API // here, but that's not entirely clear. self.expr(span, ast::ExprKind::Closure(ast::CaptureBy::Ref, fn_decl, body, span)) } fn lambda0(&self, span: Span, body: P) -> P { self.lambda(span, Vec::new(), body) } fn lambda1(&self, span: Span, body: P, ident: ast::Ident) -> P { self.lambda(span, vec![ident], body) } fn lambda_stmts(&self, span: Span, ids: Vec, stmts: Vec) -> P { self.lambda(span, ids, self.expr_block(self.block(span, stmts))) } fn lambda_stmts_0(&self, span: Span, stmts: Vec) -> P { self.lambda0(span, self.expr_block(self.block(span, stmts))) } fn lambda_stmts_1(&self, span: Span, stmts: Vec, ident: ast::Ident) -> P { self.lambda1(span, self.expr_block(self.block(span, stmts)), ident) } fn arg(&self, span: Span, ident: ast::Ident, ty: P) -> ast::Arg { let arg_pat = self.pat_ident(span, ident); ast::Arg { ty: ty, pat: arg_pat, id: ast::DUMMY_NODE_ID } } // FIXME unused self fn fn_decl(&self, inputs: Vec, output: P) -> P { P(ast::FnDecl { inputs: inputs, output: ast::FunctionRetTy::Ty(output), variadic: false }) } fn item(&self, span: Span, name: Ident, attrs: Vec, node: ast::ItemKind) -> P { // FIXME: Would be nice if our generated code didn't violate // Rust coding conventions P(ast::Item { ident: name, attrs: attrs, id: ast::DUMMY_NODE_ID, node: node, vis: ast::Visibility::Inherited, span: span }) } fn item_fn_poly(&self, span: Span, name: Ident, inputs: Vec , output: P, generics: Generics, body: P) -> P { self.item(span, name, Vec::new(), ast::ItemKind::Fn(self.fn_decl(inputs, output), ast::Unsafety::Normal, dummy_spanned(ast::Constness::NotConst), Abi::Rust, generics, body)) } fn item_fn(&self, span: Span, name: Ident, inputs: Vec , output: P, body: P ) -> P { self.item_fn_poly( span, name, inputs, output, Generics::default(), body) } fn variant(&self, span: Span, name: Ident, tys: Vec> ) -> ast::Variant { let fields: Vec<_> = tys.into_iter().map(|ty| { ast::StructField { span: ty.span, ty: ty, ident: None, vis: ast::Visibility::Inherited, attrs: Vec::new(), id: ast::DUMMY_NODE_ID, } }).collect(); let vdata = if fields.is_empty() { ast::VariantData::Unit(ast::DUMMY_NODE_ID) } else { ast::VariantData::Tuple(fields, ast::DUMMY_NODE_ID) }; respan(span, ast::Variant_ { name: name, attrs: Vec::new(), data: vdata, disr_expr: None, }) } fn item_enum_poly(&self, span: Span, name: Ident, enum_definition: ast::EnumDef, generics: Generics) -> P { self.item(span, name, Vec::new(), ast::ItemKind::Enum(enum_definition, generics)) } fn item_enum(&self, span: Span, name: Ident, enum_definition: ast::EnumDef) -> P { self.item_enum_poly(span, name, enum_definition, Generics::default()) } fn item_struct(&self, span: Span, name: Ident, struct_def: ast::VariantData) -> P { self.item_struct_poly( span, name, struct_def, Generics::default() ) } fn item_struct_poly(&self, span: Span, name: Ident, struct_def: ast::VariantData, generics: Generics) -> P { self.item(span, name, Vec::new(), ast::ItemKind::Struct(struct_def, generics)) } fn item_mod(&self, span: Span, inner_span: Span, name: Ident, attrs: Vec, items: Vec>) -> P { self.item( span, name, attrs, ast::ItemKind::Mod(ast::Mod { inner: inner_span, items: items, }) ) } fn item_static(&self, span: Span, name: Ident, ty: P, mutbl: ast::Mutability, expr: P) -> P { self.item(span, name, Vec::new(), ast::ItemKind::Static(ty, mutbl, expr)) } fn item_const(&self, span: Span, name: Ident, ty: P, expr: P) -> P { self.item(span, name, Vec::new(), ast::ItemKind::Const(ty, expr)) } fn item_ty_poly(&self, span: Span, name: Ident, ty: P, generics: Generics) -> P { self.item(span, name, Vec::new(), ast::ItemKind::Ty(ty, generics)) } fn item_ty(&self, span: Span, name: Ident, ty: P) -> P { self.item_ty_poly(span, name, ty, Generics::default()) } fn attribute(&self, sp: Span, mi: ast::MetaItem) -> ast::Attribute { attr::mk_spanned_attr_outer(sp, attr::mk_attr_id(), mi) } fn meta_word(&self, sp: Span, w: ast::Name) -> ast::MetaItem { attr::mk_spanned_word_item(sp, w) } fn meta_list_item_word(&self, sp: Span, w: ast::Name) -> ast::NestedMetaItem { respan(sp, ast::NestedMetaItemKind::MetaItem(attr::mk_spanned_word_item(sp, w))) } fn meta_list(&self, sp: Span, name: ast::Name, mis: Vec) -> ast::MetaItem { attr::mk_spanned_list_item(sp, name, mis) } fn meta_name_value(&self, sp: Span, name: ast::Name, value: ast::LitKind) -> ast::MetaItem { attr::mk_spanned_name_value_item(sp, name, respan(sp, value)) } fn item_use(&self, sp: Span, vis: ast::Visibility, vp: P) -> P { P(ast::Item { id: ast::DUMMY_NODE_ID, ident: keywords::Invalid.ident(), attrs: vec![], node: ast::ItemKind::Use(vp), vis: vis, span: sp }) } fn item_use_simple(&self, sp: Span, vis: ast::Visibility, path: ast::Path) -> P { let last = path.segments.last().unwrap().identifier; self.item_use_simple_(sp, vis, last, path) } fn item_use_simple_(&self, sp: Span, vis: ast::Visibility, ident: ast::Ident, path: ast::Path) -> P { self.item_use(sp, vis, P(respan(sp, ast::ViewPathSimple(ident, path)))) } fn item_use_list(&self, sp: Span, vis: ast::Visibility, path: Vec, imports: &[ast::Ident]) -> P { let imports = imports.iter().map(|id| { let item = ast::PathListItem_ { name: *id, rename: None, id: ast::DUMMY_NODE_ID, }; respan(sp, item) }).collect(); self.item_use(sp, vis, P(respan(sp, ast::ViewPathList(self.path(sp, path), imports)))) } fn item_use_glob(&self, sp: Span, vis: ast::Visibility, path: Vec) -> P { self.item_use(sp, vis, P(respan(sp, ast::ViewPathGlob(self.path(sp, path))))) } }