use crate::traits::query::evaluate_obligation::InferCtxtExt as _; use crate::traits::{self, DefiningAnchor, ObligationCtxt, SelectionContext}; use crate::traits::TraitEngineExt as _; use rustc_hir::def_id::DefId; use rustc_hir::lang_items::LangItem; use rustc_infer::traits::{Obligation, TraitEngine, TraitEngineExt as _}; use rustc_middle::arena::ArenaAllocatable; use rustc_middle::infer::canonical::{Canonical, CanonicalQueryResponse, QueryResponse}; use rustc_middle::traits::query::NoSolution; use rustc_middle::traits::ObligationCause; use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeVisitableExt}; use rustc_middle::ty::{GenericArg, ToPredicate}; use rustc_span::DUMMY_SP; use std::fmt::Debug; pub use rustc_infer::infer::*; pub trait InferCtxtExt<'tcx> { fn type_is_copy_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool; fn type_is_sized_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool; /// Check whether a `ty` implements given trait(trait_def_id) without side-effects. /// /// The inputs are: /// /// - the def-id of the trait /// - the type parameters of the trait, including the self-type /// - the parameter environment /// /// Invokes `evaluate_obligation`, so in the event that evaluating /// `Ty: Trait` causes overflow, EvaluatedToErrStackDependent /// (or EvaluatedToAmbigStackDependent) will be returned. fn type_implements_trait( &self, trait_def_id: DefId, params: impl IntoIterator>>, param_env: ty::ParamEnv<'tcx>, ) -> traits::EvaluationResult; /// Returns `Some` if a type implements a trait shallowly, without side-effects, /// along with any errors that would have been reported upon further obligation /// processing. /// /// - If this returns `Some([])`, then the trait holds modulo regions. /// - If this returns `Some([errors..])`, then the trait has an impl for /// the self type, but some nested obligations do not hold. /// - If this returns `None`, no implementation that applies could be found. /// /// FIXME(-Znext-solver): Due to the recursive nature of the new solver, /// this will probably only ever return `Some([])` or `None`. fn type_implements_trait_shallow( &self, trait_def_id: DefId, ty: Ty<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> Option>>; } impl<'tcx> InferCtxtExt<'tcx> for InferCtxt<'tcx> { fn type_is_copy_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { let ty = self.resolve_vars_if_possible(ty); if !(param_env, ty).has_infer() { return ty.is_copy_modulo_regions(self.tcx, param_env); } let copy_def_id = self.tcx.require_lang_item(LangItem::Copy, None); // This can get called from typeck (by euv), and `moves_by_default` // rightly refuses to work with inference variables, but // moves_by_default has a cache, which we want to use in other // cases. traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id) } fn type_is_sized_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { let lang_item = self.tcx.require_lang_item(LangItem::Sized, None); traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, lang_item) } #[instrument(level = "debug", skip(self, params), ret)] fn type_implements_trait( &self, trait_def_id: DefId, params: impl IntoIterator>>, param_env: ty::ParamEnv<'tcx>, ) -> traits::EvaluationResult { let trait_ref = ty::TraitRef::new(self.tcx, trait_def_id, params); let obligation = traits::Obligation { cause: traits::ObligationCause::dummy(), param_env, recursion_depth: 0, predicate: ty::Binder::dummy(trait_ref).to_predicate(self.tcx), }; self.evaluate_obligation(&obligation).unwrap_or(traits::EvaluationResult::EvaluatedToErr) } fn type_implements_trait_shallow( &self, trait_def_id: DefId, ty: Ty<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> Option>> { self.probe(|_snapshot| { let mut selcx = SelectionContext::new(self); match selcx.select(&Obligation::new( self.tcx, ObligationCause::dummy(), param_env, ty::TraitRef::new(self.tcx, trait_def_id, [ty]), )) { Ok(Some(selection)) => { let mut fulfill_cx = >::new(self); fulfill_cx.register_predicate_obligations(self, selection.nested_obligations()); Some(fulfill_cx.select_all_or_error(self)) } Ok(None) | Err(_) => None, } }) } } pub trait InferCtxtBuilderExt<'tcx> { fn enter_canonical_trait_query( self, canonical_key: &Canonical<'tcx, K>, operation: impl FnOnce(&ObligationCtxt<'_, 'tcx>, K) -> Result, ) -> Result, NoSolution> where K: TypeFoldable>, R: Debug + TypeFoldable>, Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>; } impl<'tcx> InferCtxtBuilderExt<'tcx> for InferCtxtBuilder<'tcx> { /// The "main method" for a canonicalized trait query. Given the /// canonical key `canonical_key`, this method will create a new /// inference context, instantiate the key, and run your operation /// `op`. The operation should yield up a result (of type `R`) as /// well as a set of trait obligations that must be fully /// satisfied. These obligations will be processed and the /// canonical result created. /// /// Returns `NoSolution` in the event of any error. /// /// (It might be mildly nicer to implement this on `TyCtxt`, and /// not `InferCtxtBuilder`, but that is a bit tricky right now. /// In part because we would need a `for<'tcx>` sort of /// bound for the closure and in part because it is convenient to /// have `'tcx` be free on this function so that we can talk about /// `K: TypeFoldable>`.) fn enter_canonical_trait_query( self, canonical_key: &Canonical<'tcx, K>, operation: impl FnOnce(&ObligationCtxt<'_, 'tcx>, K) -> Result, ) -> Result, NoSolution> where K: TypeFoldable>, R: Debug + TypeFoldable>, Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>, { let (infcx, key, canonical_inference_vars) = self .with_opaque_type_inference(DefiningAnchor::Bubble) .build_with_canonical(DUMMY_SP, canonical_key); let ocx = ObligationCtxt::new(&infcx); let value = operation(&ocx, key)?; ocx.make_canonicalized_query_response(canonical_inference_vars, value) } }