Matematik
Regneregler
\(x+y=z\)
\(z-y=x\)
\(z-x=y\)
\(\sum_{i=a}^b i=a+(a \pm 1) + \cdots +(b \pm 1)+b\)
\(xy=z\)
\(\frac {z}{y}=x\)
\(\frac {z}{x}=y\)
\(\prod_{i=a}^b i=a(a \pm 1) \cdots (b \pm 1)b\)
\(n!=\prod_{i=1}^n i,n \gt 0\)
\(0!=1\)
\(\frac xy=z\)
\(zy=x\)
\(\frac {x}{z}=y\)
\(x^y=z\)
\(\sqrt[y] {z}=x\)
\(log_x(z)=y\)
\(x^n=\prod_{i=1}^n x,\ n \gt 0\)
\(x^n=\frac {1}{x^{-n}},\ n \lt 0\)
\(x^0=1\)
\(x^{\frac nm}=\sqrt[m] {x^n}\)
\(\frac xy+n=\frac {x+n y}{y}\)
\(\frac xy+\frac ab=\frac {x b+ay}{yb}\)
\(\frac xyn=\frac {xn}{y}\)
\(\frac xy\frac ab=\frac {x a}{y b}\)
\(\frac {x}{\frac ab}=\frac {xb}{a}\)
\(\frac {\frac xy}z=\frac {x}{yz}\)
\(\frac {\frac xy}{\frac ab}=\frac {xb}{ya}\)
\((x^a)^b=x^{ab}\)
\(x^ay^a=(xy)^a\)
\(\frac {x^a}{y^a}=(\frac xy)^a\)
\(x^ax^b=x^{a+b}\)
\(\frac {x^a}{x^b}=x^{a-b}\)
Ligninger
Andengrads:
\(ax^2+bx+c=0\)
\(d=b^2-4ac\)
\(x=\frac {-b \pm \sqrt[2] {d}}{2a}\)
Funktioner
\(y=f(x)\)
\(x=f^{-1}(y)\)
Lineær:
\(f(x)=ax+b\)
\(a=\frac {y_1-y_0}{x_1-x_0}\)
\(b=y-ax\)
\(f(0)=b\)
Eksponentiel:
\(f(x)=ba^x\)
\(a=\sqrt[x_1-x_0] {\frac {y_1}{y_{0}}}\)
\(b=\frac {y}{a^x}\)
\(f(0)=b\)
Potens:
\(f(x)=bx^a\)
\(a=\frac {log_n(y_1)-log_n(y_0)}{log_n(x_1)-log_n(x_1)}\)
\(b=\frac {y}{x^a}\)
\(f(0)=0\)
\(f(1)=b\)
Andengrads:
\(f(x)=ax^2+bx+c\)
Trigonometri
\(modliggende_{\alpha}=hosliggende_{\beta}=a\)
\(hosliggende_{\alpha}=modliggende_{\beta}=b\)
\(hypotenuse=modliggende_{\gamma}=c\)
\(sin(\theta)=\frac {modliggende_{\theta}}{hypotenuse_{\theta}}\)
\(cos(\theta)=\frac {hosliggende_{\theta}}{hypotenuse_{\theta}}\)
\(tan(\theta)=\frac {modliggende_{\theta}}{hosliggende_{\theta}}\)
\(cot(\theta)=\frac {hosliggende_{\theta}}{modliggende_{\theta}}\)
\(csc(\theta)=\frac {hypotenuse_{\theta}}{modliggende_{\theta}}\)
\(sec(\theta)=\frac {hypotenuse_{\theta}}{hosliggende_{\theta}}\)
\(sin^{-1}(\frac {modliggende_{\theta}}{hypotenuse_{\theta}})=\theta\)
\(cos^{-1}(\frac {hosliggende_{\theta}}{hypotenuse_{\theta}})=\theta\)
\(tan^{-1}(\frac {modliggende_{\theta}}{hosliggende_{\theta}})=\theta\)
\(cot^{-1}(\frac {hosliggende_{\theta}}{modliggende_{\theta}})=\theta\)
\(csc^{-1}(\frac {hypotenuse_{\theta}}{modliggende_{\theta}})=\theta\)
\(sec^{-1}(\frac {hypotenuse_{\theta}}{hosliggende_{\theta}})=\theta\)
Forkortelser:
\(sin=sinus\)
\(cos=cosinus\)
\(tan=tangens\)
\(cot=cotangens\)
\(csc=cosekant\)
\(sec=sekant\)
\(arcsin=sin^{-1}\)
\(arccos=cos^{-1}\)
\(arctan=tan^{-1}\)
\(arccot=cot^{-1}\)
\(arcsec=sec^{-1}\)
\(arccsc=csc^{-1}\)
\(deg(rad)=\frac {rad \cdot 180}{\pi}\)
\(rad(deg)=\frac {deg \cdot \pi}{180}\)
\(\Theta(n)=(n-2)\pi\)
... hvori \({\Theta}(n)\) er vinkelsummen af n-gonen.
\(\Theta(3)=(3-2)\pi=\pi\)
\(\alpha=sin^{-1}(\frac ac)=cos^{-1}(\frac bc)=tan^{-1}(\frac ab)=\Theta(3)-\beta-\gamma\)
\(\beta=sin^{-1}(\frac bc)=cos^{-1}(\frac ac)=tan^{-1}(\frac ba)=\Theta(3)-\alpha-\gamma\)
\(\gamma=\Theta(3)-\alpha-\beta\)
I en regulær trekant:
\(\alpha=\beta=\gamma=\frac {\pi}{3}\)
I en retvinklet trekant:
\(\gamma=\frac {\pi}{2}\)
\(a=c \cdot sin(\alpha)=c \cdot cos(\beta)=b \cdot tan(\alpha)=b \cdot cot(\beta)\)
\(b=c \cdot sin(\beta)=c \cdot cos(\alpha)=a \cdot tan(\beta)=a \cdot cot(\alpha)\)
\(c=a \cdot csc(\alpha)=b \cdot csc(\beta)=a \cdot sec(\beta)=b \cdot sec(\alpha)\)
I en retvinklet trekant:
\(a=\sqrt[2] {c^2-b^2}\)
\(b=\sqrt[2] {c^2-a^2}\)
\(c=\sqrt[2] {a^2+b^2}\)
I en retvinklet trekant, hvori kateterne har samme længde:
\(a=b=\sqrt[2] {\frac {c^2}{2}}\)
I en regulær trekant:
\(a=b=c\)
\(O=a+b+c\)
\(A=\frac {b h}{2}\)
Mellem to ligedannede trekanter:
\(\alpha_1=\alpha_0\)
\(\beta_1=\beta_0\)
\(\gamma_1=\gamma_0\)
\(k=\frac {a_1}{a_0}=\frac {b_1}{b_0}=\frac {c_1}{c_0}\)
\(a_1=a_0 k\)
\(b_1=b_0 k\)
\(c_1=c_0 k\)
\(O_1=O_0 k\)
\(A_1=A_0 k^2\)
Konstanter
Navn | Symbol |
---|---|
Pythagoras' konstant | \(\sqrt[2] {2}\) |
Theodorus' konstant | \(\sqrt[2] {3}\) |
Eulers tal | \(e\) |
den imaginære enhed | \(i\) |
Arkimedes' konstant (pi) | \(\pi\) |
tau | \(\tau\) |
den gyldne ratio | \(\phi\) |
\(\sqrt[2] {2} \approx \frac {1\ 414\ 213\ 562}{10^9}\)
\(\sqrt[2] {3} \approx \frac {1\ 732\ 050\ 808}{10^9}\)
\(e=\sum_{n=0}^\infty \frac {1}{n!} \approx \frac {2\ 718\ 281\ 828}{10^9}\)
\(i=\sqrt[2] {-1}\)
\(\pi \approx \frac {3\ 141\ 592\ 654}{10^9}\)
\(\tau=2\pi \approx \frac {6\ 283\ 185\ 307}{10^9}\)
\(\phi=\frac {1+\sqrt[2] {5}}{2} \approx \frac {1\ 618\ 033\ 989}{10^9}\)